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Introduction 
The neutron balance (transport or diffusion) equation for calculating the spatial flux for a critical 
reactor is homogeneous, while the corresponding balance equation for calculating the flux 
distribution in an Accelerator Driven System (ADS) is inhomogeneous due to the presence of the 
external source stemming from the spallation target. Consequently, the customary methods that 
use eigenvalues and eigenfunctions of the homogeneous neutron balance equation for a critical 
system may become inadequate for solving the neutron balance equation to determine the 
neutron flux distribution in an ADS. Furthermore, while the value of the “multiplication factor” 
keff for a critical reactor is obtained directly from the homogeneous neutron balance equation as 
its “dominant eigenvalue”, the meaning of an equivalent “multiplication factor for an ADS” 
needs to be carefully examined, since it can no longer be defined as the “dominant eigenvalue of 
the neutron balance equation for an ADS”.  

Currently, the usual procedure to calculate the neutron flux distribution in an ADS is to use the 
well-established codes for critical reactors, with the value of keff set to one; the solution for the 
inhomogeneous neutron balance equation underlying the ADS is then obtained by iterating the 
flux-solution until the user-set convergence criteria are satisfied.  Once the flux distribution has 
been thus obtained, a “multiplication factor” is calculated by taking the ratio of the production 
terms to the loss terms, for the entire reactor core. Note that this ratio differs from keff for a 
critical reactor. Moreover, the multiplication factor and flux distribution function of an ADS 
depend strongly on the location of the external source (the inhomogeneous term) within the 
reactor core [1].   

In addition to calculating the steady-state flux distribution in an ADS, it is also of obvious 
interest to determine the dynamical behavior of the ADS, particularly for determining its stability 
and controllability, both under normal operating conditions and under abnormal transient 
situations (reactivity excursion, pump failure, etc.). In principle, the dynamic behavior of an 
ADS would be determined by solving the time-dependent neutron balance (transport or 
diffusion) equation, including delayed neutrons and feedback effects.  

In practice, the time-dependent behavior of a critical reactor is determined by considering 
differences between the actual, time-dependent system and some just-critical, time-independent, 
system [2]. Customarily, the reactivity is calculated by using first-order perturbation theory, in 
which the adjoint function (also referred to as the “adjoint flux”) for the just-critical, time-
independent reference system is introduced as a weighting function to define and calculate such 
key parameters as the “mean neutron generation time”, the ”effective delayed-neutron fraction”, 
etc. In particular, this procedure yields expressions for the reactivity that are insensitive to first-
order errors in the flux.  

 

For an ADS, though, the procedure described above cannot be readily used, since a “just-
critical”, steady-state configuration that could be used as the “reference-system” does not exist as 
in the case of critical reactors. This is because for an ADS, in contradistinction to a critical 
reactor, both the “reference” and the actual systems are inhomogeneous, source-driven 
systems. Hence, it is no longer obvious which adjoint function would be best suited as a weight 
function for calculating the key parameters needed to determine the reactivity (and reactivity 
changes) in an ADS. Furthermore, the use of first-order perturbation theory must be itself re-
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examined, since it is no longer clear that the way in which it has been customarily, and 
successfully, used for critical reactors also holds for an ADS.  Some of he difficulties that arise 
when conventional first-order perturbation theory is applied to an ADS are highlighted in the 
remainder of this paper. 

 

Conventional first-order perturbation theory for ADS 
The customary steady-state diffusion equation for an ADS system can be written in the form  

,QFM +Φ=Φ  (1) 

where M denotes the destruction operator  and F denotes the production operator. The 
corresponding adjoint problem can be written as [2]:  

,QFM +++++ +Φ=Φ
 

(2) 

where the superscript “+” denotes  quantities adjoint to the ones appearing  in Eq. (1), and the 
adjoint source Q is undefined at this stage.  +

As shown in [1], applying the conventional first-order perturbation theory to calculate the 
reactivity due to a perturbation solely in the destruction operator M, in Eq.(1), leads to the 
following expression:  
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Test of currently used adjoint functions for ADS Calculations. 

 
Besides the brute-force method, two approaches (see e.g. [3,4] ) are currently used for 
calculating reactivity changes using adjoint functions. The first approach uses adjoint functions 
calculated from a reference critical-reactor, as mentioned in the introduction. The second 
approach uses the adjoint function obtained by setting the adjoint source Q  in Eq. (2) to the 
system’s fission source, and by solving the resulting equation using standard fixed-source codes. 
The adjoint fluxes obtained using either of these two approaches are then in Eq. (3), modified 
accordingly, namely, either without or with the second and third terms in its numerator. For 
comparison purposes, we also used a third-type of adjoint function, obtained by setting Q =  
in Eq. (2), thus setting the source for the adjoint equation equal to the external spallation source 
strength. 

+

+ Q

The accuracy of the three approaches described above has been assessed by effecting a 
perturbation in a reference ADS core, and subsequently comparing the respective first-order 
perturbation theory results with direct recalculations of the multiplication factor of the perturbed 
ADS core. The cylindrical geometry of the reference ADS core is shown in Fig. 1; the 
dimensions and material compositions of the core are detailed in [1]. The flux distributions, both 
for the reference ADS core and for the recalculated perturbed ADS core, were computed by 
using the DIXY2 neutron diffusion code with a 2-dimensional axial symmetry option (see [1] for 
details).  

The perturbation introduced in the reference ADS core consisted of a temperature decrease from 
1183K to 600K in fuel zone 1. The comparisons of direct recalculations with first-order 
perturbation theory results are presented in Table 1. These comparisons show that, for the ADS 
core under consideration, conventional first-order perturbation theory produces erroneous results, 
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which are all about 35% larger than the exact result obtained by a direct recalculation. We also 
wish to mention here that we have also considered a critical-reactor configuration chosen to 
have the same flux distribution as the reference ADS core, in which we have introduced the same 
temperature perturbation as mentioned above for the ADS core, and have then used first-order 
perturbation theory to calculate the predicted change. The first-order perturbation theory result 
differed by only 1.5% from the exact, recalculated result. Altogether, our results clearly indicate 
that the conventional use of first-order perturbation theory, with adjoint fluxes calculated using 
the initial, just-critical reactor configuration, is adequate for critical systems, but is quite 
inadequate for source-driven subcritical configurations. 

 

 

Type of calculation Reactivity feedback 

Exact difference between unperturbed and perturbed critical 
reactor configurations 

7.78 x 10-4 

First order perturbation theory, with +Φ obtained from a 
homogeneous reactor 

10.70 x 10-4 

First order perturbation theory, with +Φ  obtained by setting   

fQ Σ= ν in Eq. (2)  
10.90x 10-4 

First order perturbation theory, with +Φ  obtained by setting 
+=QQ   in Eq. (2)  

10.45 10-4 

Table 1: Comparison of reactivity feedbacks for a temperature decrease from 1183K to 600 
K in zone 1 of Fig. 1 

 

Effects of the adjoint function on point kinetics parameters for ADS 

As mentioned in the introduction, the parameters for the dynamic point kinetic models for 
critical reactors are defined by using the adjoint function for a just-critical reference system as a 
weighting function [2].  Although this procedure cannot be generally valid for an ADS, if it is 
nonetheless used, the resulting point-kinetics model that would be obtained for an ADS could be 
written in the form: 
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A qualitative sense of the behavior of P(t) and the other kinetics-parameters that appear in the 
above equations can be obtained by considering one-group of delayed neutrons only, and by 
resolving the resulting equations analytically. This procedure yields:   
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where: 
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Since the ADS core is initially sub-critical, the reactivity ρ∆  corresponds to a positive 
perturbation added to the original reactivity sρ .The subscript “s” distinguishes the reactivity, 
based on the “multiplication factor of an ADS”, from the source-free  core reactivity.  Q is the 
external neutron source strength, stemming from the spallation-neutrons, while the other 
quantities are as defined in [2]. 

As the above equations show, the mean neutron generation time affects not only the decaying 
modes through the components c , but also the power in the steady state mode. Moreover, the 
constant power level is proportional to the product of the source strength and the mean neutron 
generation time. Hence, it is very important to determine the mean neutron generation time as 
accurately as possible, if point-kinetics were to be used to simulate the dynamic behavior of an 
ADS. Note also that the levels of sub-criticality considered for ADS considerably diminish the 
role played by the delayed neutron fraction and precursors in modeling the dynamic behavior of 
an ADS; this is in contrast to modeling the dynamic behavior of near-critical reactors, where the 
delayed neutron fraction and precursors are of crucial importance. 

k

 

 Conclusions and outlook 

The use of adjoint functions stemming from just-critical reference systems is currently often used 
in conjunction with the conventional first-order perturbation theory for obtaining the dynamic 
parameters that are subsequently used in point-kinetics models for simulating the dynamic 
behavior of an ADS. As we have shown in this paper, the use of this conventional procedure 
leads to significant errors in the calculations of reactivity-feedback in an ADS. This is in contrast 
to reactivity-feedback in a critical reactor, where the conventional first-order perturbation theory 
yields considerably more accurate results. Furthermore, it is essential to calculate accurately the 
mean neutron generation time; this is because, as we have illustrated in our paper, the mean 
neutron generation time appears as a multiplicative factor in the contribution brought by the 
strength of the external spallation source to the overall power-level of an ADS. Hence, an 
accurate calculation of the mean neutron generation time is essential for determining the 
requirements of proton current strength and, hence, the size of the respective accelerator. 

Since, as we have illustrated in this paper, the use of this conventional procedure leads to 
significant errors in the calculations of reactivity-feedback in an ADS, our current research aims 
at examining alternative methods for the efficient (i.e., as opposed to using brute-force) 
calculation of dynamic parameters for point-kinetics and, subsequently, multi-dimensional 
kinetics simulations of ADS. In particular, we examine the applicability of variational methods 
(as described, e.g., in  [5]), as well as sensitivity theory for nonlinear and non-homogeneous 
equations as originally developed in [6].  
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           Figure 1.  R-Z Geometry of ADS Core  
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