On the Use of Perturbation Theory for Dynamic Simulation of
Accelerator Driven Systems (ADS)

R. Dagan, D. G. Cacuci, C.H.M. Broeders
Forschungszentrum Karlsruhe GmbH
Postfach 3640, D-76021 Karlsruhe

Introduction

The neutron balance (transport or diffusion) equation for calculating the spatial flux for a critical
reactor is homogeneous, while the corresponding balance equation for calculating the flux
distribution in an Accelerator Driven System (ADS) is inhomogeneous due to the presence of the
external source stemming from the spallation target. Consequently, the customary methods that
use eigenvalues and eigenfunctions of the homogeneous neutron balance equation for a critical
system may become inadequate for solving the neutron balance equation to determine the
neutron flux distribution in an ADS. Furthermore, while the value of the “multiplication factor”
key for a critical reactor is obtained directly from the homogeneous neutron balance equation as
its “dominant eigenvalue”, the meaning of an equivalent “multiplication factor for an ADS”
needs to be carefully examined, since it can no longer be defined as the “dominant eigenvalue of
the neutron balance equation for an ADS”.

Currently, the usual procedure to calculate the neutron flux distribution in an ADS is to use the
well-established codes for critical reactors, with the value of k. set to one; the solution for the
inhomogeneous neutron balance equation underlying the ADS is then obtained by iterating the
flux-solution until the user-set convergence criteria are satisfied. Once the flux distribution has
been thus obtained, a “multiplication factor” is calculated by taking the ratio of the production
terms to the loss terms, for the entire reactor core. Note that this ratio differs from k. for a
critical reactor. Moreover, the multiplication factor and flux distribution function of an ADS
depend strongly on the location of the external source (the inhomogeneous term) within the
reactor core [1].

In addition to calculating the steady-state flux distribution in an ADS, it is also of obvious
interest to determine the dynamical behavior of the ADS, particularly for determining its stability
and controllability, both under normal operating conditions and under abnormal transient
situations (reactivity excursion, pump failure, etc.). In principle, the dynamic behavior of an
ADS would be determined by solving the time-dependent neutron balance (transport or
diffusion) equation, including delayed neutrons and feedback effects.

In practice, the time-dependent behavior of a critical reactor is determined by considering
differences between the actual, time-dependent system and some just-critical, time-independent,
system [2]. Customarily, the reactivity is calculated by using first-order perturbation theory, in
which the adjoint function (also referred to as the “adjoint flux™) for the just-critical, time-
independent reference system is introduced as a weighting function to define and calculate such
key parameters as the “mean neutron generation time”, the “effective delayed-neutron fraction”,
etc. In particular, this procedure yields expressions for the reactivity that are insensitive to first-
order errors in the flux.

For an ADS, though, the procedure described above cannot be readily used, since a “just-
critical”, steady-state configuration that could be used as the “reference-system” does not exist as
in the case of critical reactors. This is because for an ADS, in contradistinction to a critical
reactor, both the “reference” and the actual systems are inhomogeneous, source-driven
systems. Hence, it is no longer obvious which adjoint function would be best suited as a weight
function for calculating the key parameters needed to determine the reactivity (and reactivity
changes) in an ADS. Furthermore, the use of first-order perturbation theory must be itself re-
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examined, since it is no longer clear that the way in which it has been customarily, and
successfully, used for critical reactors also holds for an ADS. Some of he difficulties that arise
when conventional first-order perturbation theory is applied to an ADS are highlighted in the
remainder of this paper.

Conventional first-order perturbation theory for ADS
The customary steady-state diffusion equation for an ADS system can be written in the form

MD =FO+Q, (1)
where M denotes the destruction operator and F denotes the production operator. The
corresponding adjoint problem can be written as [2]:

MO =F*®o*+Q", )

where the superscript “+” denotes quantities adjoint to the ones appearing in Eq. (1), and the
adjoint source Q" is undefined at this stage.

As shown in [1], applying the conventional first-order perturbation theory to calculate the
reactivity due to a perturbation solely in the destruction operator M, in Eq.(1), leads to the
following expression:

(@, 5MD)+ (0", 50)+ pld*, Fod) 3)
(0", Fo) '

Test of currently used adjoint functions for ADS Calculations.

Besides the brute-force method, two approaches (see e.g. [3,4] ) are currently used for
calculating reactivity changes using adjoint functions. The first approach uses adjoint functions
calculated from a reference critical-reactor, as mentioned in the introduction. The second

approach uses the adjoint function obtained by setting the adjoint source Q" in Eq. (2) to the

system’s fission source, and by solving the resulting equation using standard fixed-source codes.
The adjoint fluxes obtained using either of these two approaches are then in Eq. (3), modified
accordingly, namely, either without or with the second and third terms in its numerator. For

comparison purposes, we also used a third-type of adjoint function, obtained by setting Q" =Q

in Eq. (2), thus setting the source for the adjoint equation equal to the external spallation source
strength.

The accuracy of the three approaches described above has been assessed by effecting a
perturbation in a reference ADS core, and subsequently comparing the respective first-order
perturbation theory results with direct recalculations of the multiplication factor of the perturbed
ADS core. The cylindrical geometry of the reference ADS core is shown in Fig. 1; the
dimensions and material compositions of the core are detailed in [1]. The flux distributions, both
for the reference ADS core and for the recalculated perturbed ADS core, were computed by
using the DIXY2 neutron diffusion code with a 2-dimensional axial symmetry option (see [1] for
details).

The perturbation introduced in the reference ADS core consisted of a temperature decrease from
1183K to 600K in fuel zone 1. The comparisons of direct recalculations with first-order
perturbation theory results are presented in Table 1. These comparisons show that, for the ADS
core under consideration, conventional first-order perturbation theory produces erroneous results,
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which are all about 35% larger than the exact result obtained by a direct recalculation. We also
wish to mention here that we have also considered a critical-reactor configuration chosen to
have the same flux distribution as the reference ADS core, in which we have introduced the same
temperature perturbation as mentioned above for the ADS core, and have then used first-order
perturbation theory to calculate the predicted change. The first-order perturbation theory result
differed by only 1.5% from the exact, recalculated result. Altogether, our results clearly indicate
that the conventional use of first-order perturbation theory, with adjoint fluxes calculated using
the initial, just-critical reactor configuration, is adequate for critical systems, but is quite
inadequate for source-driven subcritical configurations.

Type of calculation Reactivity feedback

Exact difference between unperturbed and perturbed critical 7.78 x 107
reactor configurations

First order perturbation theory, with @ *obtained from a 10.70 x 10°*
homogeneous reactor

First order perturbation theory, with ®* obtained by setting 10.90x 107
Q =vz, inEq. (2)

First order perturbation theory, with ®* obtained by setting 10.45 10
0=0" inEq. (2)

Table 1: Comparison of reactivity feedbacks for a temperature decrease from 1183K to 600
K in zone 1 of Fig. 1

Effects of the adjoint function on point Kinetics parameters for ADS

As mentioned in the introduction, the parameters for the dynamic point kinetic models for
critical reactors are defined by using the adjoint function for a just-critical reference system as a
weighting function [2]. Although this procedure cannot be generally valid for an ADS, if'it is
nonetheless used, the resulting point-kinetics model that would be obtained for an ADS could be
written in the form:

dP p <
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A qualitative sense of the behavior of P(t) and the other kinetics-parameters that appear in the
above equations can be obtained by considering one-group of delayed neutrons only, and by
resolving the resulting equations analytically. This procedure yields:

AQ
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Since the ADS core is initially sub-critical, the reactivity Ap corresponds to a positive
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perturbation added to the original reactivity p, .The subscript “s” distinguishes the reactivity,

based on the “multiplication factor of an ADS”, from the source-free core reactivity. Q is the
external neutron source strength, stemming from the spallation-neutrons, while the other
quantities are as defined in [2].

As the above equations show, the mean neutron generation time affects not only the decaying
modes through the components ¢, , but also the power in the steady state mode. Moreover, the

constant power level is proportional to the product of the source strength and the mean neutron
generation time. Hence, it is very important to determine the mean neutron generation time as
accurately as possible, if point-kinetics were to be used to simulate the dynamic behavior of an
ADS. Note also that the levels of sub-criticality considered for ADS considerably diminish the
role played by the delayed neutron fraction and precursors in modeling the dynamic behavior of
an ADS; this is in contrast to modeling the dynamic behavior of near-critical reactors, where the
delayed neutron fraction and precursors are of crucial importance.

Conclusions and outlook

The use of adjoint functions stemming from just-critical reference systems is currently often used
in conjunction with the conventional first-order perturbation theory for obtaining the dynamic
parameters that are subsequently used in point-kinetics models for simulating the dynamic
behavior of an ADS. As we have shown in this paper, the use of this conventional procedure
leads to significant errors in the calculations of reactivity-feedback in an ADS. This is in contrast
to reactivity-feedback in a critical reactor, where the conventional first-order perturbation theory
yields considerably more accurate results. Furthermore, it is essential to calculate accurately the
mean neutron generation time; this is because, as we have illustrated in our paper, the mean
neutron generation time appears as a multiplicative factor in the contribution brought by the
strength of the external spallation source to the overall power-level of an ADS. Hence, an
accurate calculation of the mean neutron generation time is essential for determining the
requirements of proton current strength and, hence, the size of the respective accelerator.

Since, as we have illustrated in this paper, the use of this conventional procedure leads to
significant errors in the calculations of reactivity-feedback in an ADS, our current research aims
at examining alternative methods for the efficient (i.e., as opposed to using brute-force)
calculation of dynamic parameters for point-kinetics and, subsequently, multi-dimensional
kinetics simulations of ADS. In particular, we examine the applicability of variational methods
(as described, e.g., in [5]), as well as sensitivity theory for nonlinear and non-homogeneous
equations as originally developed in [6].
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Figure 1. R-Z Geometry of ADS Core






