Semi-empirical systematics of (n, p) reaction cross-section at $14.5,20$, and 30 MeV

C.H.M. Broeders, A.Yu. Konobeyev *
Institut für Reaktorsicherheit, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe, Germany
Received 26 April 2006; received in revised form 20 September 2006; accepted 22 September 2006

Available online 16 October 2006

Abstract

A new semi-empirical formula for the evaluation of the (n, p) reaction cross-section is discussed. The formula was derived using analytical expressions for the calculation of the proton emission spectrum in nuclear reactions within the framework of the preequilibrium exciton model and the evaporation model. A new analysis of experimental (n, p) reaction cross-sections was performed. The experimental data and model calculations were used to get the (n, p) reaction cross-section systematics at $14.5,20$, and 30 MeV . The systematics provides the best description of experimental data compared with formulas proposed earlier by other authors. © 2006 Elsevier B.V. All rights reserved.

1. Introduction

A systematics is used for the evaluation of neutron induced reaction cross-section, when experimental data are scarce and results of model calculations seem unreliable.

Various approaches are applied to study the systematic dependence of neutron induced reaction cross-sections. As a rule, in empirical approaches, the cross-section is expressed by an exponential function with its argument depending on the number of nucleons in the target nucleus [1]. The formal use of the evaporation model for the justification of the exponential dependence of the cross-section, as it was done in many papers, does not seem correct, because it ignores an important contribution of the non-equilibrium particle emission in the reaction cross-section for medium and heavy nuclei. The semi-empirical approach to the study of the systematic depen-

[^0]dence of neutron induced reaction cross-sections with detailed description of the non-equilibrium and equilibrium particle emission has been suggested in Refs. [2-9]. It was shown that the use of the method [4-9] results in a better description of experimental data (minimal χ^{2} values) than can be obtained from the best empirical approaches. Further development of the approach [4-9] is done in this work.

The quality of the systematics depends also on the data set used to get numerical values of free parameters. The use of incomplete and out-dated sets of experimental data, as subjective criteria for the selection of measurements, as it is sometimes done, reduces the value of systematics, as independent and reliable instrument for the cross-section prediction.

A new semi-empirical formula for the evaluation of the (n, p) reaction cross-section is suggested in this paper. The formula was obtained using analytical expressions describing the contribution of non-equilibrium and equilibrium proton emission in the (n, p) reaction crosssection. The new analysis of available experimental data at 14.5 MeV has been performed for target nuclei with the mass number from 40 to 209. The formula provides the best fit for experimental data at 14.5 MeV compared with systematics proposed by other authors. The new systematics was obtained also for the 20 and 30 MeV -neutron incident energy.

2. Basic principles of the development of the (n, p) reaction cross-section systematics

2.1. The preequilibrium proton emission

According to the preequilibrium exciton model in a "closed" form [10] the energy distribution of protons emitted from the nucleus before the attainment of an equilibrium state is equal to

$$
\begin{align*}
\frac{d \sigma^{\mathrm{pre}}}{d \varepsilon_{p}}= & \sigma_{\mathrm{non}}\left(E_{n}\right) \frac{\left(2 S_{p}+1\right) \mu_{p} \varepsilon_{p} \sigma_{p}^{\mathrm{inv}}\left(\varepsilon_{p}\right)}{\pi^{2} \hbar^{3}} \\
& \times \sum_{n=n_{0}} R_{p}(n) \frac{\omega\left(p-1, h, U_{p}\right)}{\omega\left(p, h, E_{0}\right)} \frac{1}{\lambda_{n}^{+}+\lambda_{n}^{-}+\gamma_{n}} D(n), \tag{1}
\end{align*}
$$

where $\sigma_{\text {non }}$ is the cross-section of non-elastic interaction of the incident neutron with a nucleus at the kinetic energy $E_{n} ; S_{p}$ and μ_{p} are spin and reduced mass of the outgoing proton; ε_{p} is the kinetic energy of the proton; $\sigma_{p}^{\mathrm{inv}}$ is the inverse reaction cross-section for proton; $\omega(p, h, E)$ is the density of exciton states with p particles and h holes $(p+h=n)$ at the excitation energy E; U_{p} is the excitation energy of the nucleus formed after the proton escape, $U_{p}=\alpha E_{n}+Q_{(n, p)}-$ ε_{p} and $\alpha=A /(A+1), Q_{(n, p)}$ is the energy of the (n, p) reaction; $E_{0}=\alpha E_{n}+Q_{n}$, where Q_{n} is the neutron separation energy for the compound nucleus; λ_{n}^{+}and λ_{n}^{-}are transition rates from the n-exciton state to the states with $n+2$ and $n-2$ excitons, correspondingly; γ_{n} is the nucleon emission rate; $R_{p}(n)$ is the factor describing the difference between the number of neutrons and protons in the n-exciton state; $D(n)$ is the factor, which takes into account the "depletion" of the n-exciton state due to the nucleon emission; n_{0} is the initial exciton number ($n_{0}=3$).

Using the Strutinski-Ericson formula [11] for exciton level density, the Williams approach [12] for the calculation of λ_{n}^{+}and assuming that the transition rate from n to $n+2$ state visibly exceeds the rates λ_{n}^{-}and γ_{n}, the expression for proton emission spectrum can be written as follows

$$
\begin{equation*}
\frac{d \sigma^{\mathrm{pre}}}{d \varepsilon_{p}}=\sigma_{\mathrm{non}}\left(E_{n}\right) \frac{\left(2 S_{p}+1\right) \mu_{p} \varepsilon_{p} \sigma_{p}^{\mathrm{inv}}\left(\varepsilon_{p}\right)}{2 \pi^{3} \hbar^{2} g^{4} E_{0}^{3}|M|^{2}} \sum_{n=n_{0}} R_{p}(n)\left(\frac{U_{p}}{E_{0}}\right)^{n-2} p\left(n^{2}-1\right) \tag{2}
\end{equation*}
$$

where $|M|^{2}$ is the mean square of the matrix element of the residual nuclear interaction; g is the single particle level density.

The inverse reaction cross-section can be evaluated using the "sharp cut-off" approximation: $\sigma_{p}^{\text {inv }}\left(\varepsilon_{p}\right)=\pi R^{2}\left(1-V_{p} / \varepsilon_{p}\right)$, where R is the nucleus radius and V_{p} is the Coulomb potential for protons. Assuming that the term $n=3$ gives the main contribution in Eq. (2), after the integration from the minimal to maximal available energy for the proton emission $A E_{n} /(A+1)+Q_{(n, p)}$ one obtains the expression for the precompound component of the (n, p) reaction cross-section

$$
\begin{equation*}
\sigma_{(n, p)}^{\mathrm{pre}}=\sigma_{\mathrm{non}}\left(E_{n}\right) \frac{\left(2 S_{p}+1\right) \mu_{p} R^{2}}{\pi^{2} \hbar^{2} g^{4} E_{0}^{4}|M|^{2}}\left(\alpha E_{n}+Q_{(n, p)}-V_{p}\right)^{3}, \tag{3}
\end{equation*}
$$

where $R_{p}(3)$ is taken equal to 0.75 [13]; V_{p} is the Coulomb potential for protons; R is the nucleus radius.

2.2. The equilibrium proton emission

Using the Weisskopf-Ewing theory [14] and assuming that the neutron emission width exceeds widths for other channels, the equilibrium component of the (n, p) reaction cross-section can be evaluated as follows (see, e.g., Refs. [4,15])

$$
\begin{equation*}
\sigma_{(n, p)}^{\mathrm{eq}}=\sigma_{\mathrm{non}}\left(E_{n}\right)\left(1-P^{\mathrm{pre}}\right) \frac{\mu_{p}\left(2 S_{p}+1\right)}{\mu_{n}\left(2 S_{n}+1\right)} \exp \left[\frac{\alpha E_{n}+Q_{(n, p)}-V_{p}}{T_{p}}-\frac{\alpha E_{n}}{T_{n}}\right] \tag{4}
\end{equation*}
$$

where $P^{\text {pre }}$ is the total probability of non-equilibrium processes; S_{n} and μ_{n} are spin and reduced mass of the outgoing neutron; T_{n} and T_{p} are nuclear temperature for residuals, produced after the neutron and proton emission, correspondingly.

The nuclear temperature can be evaluated using the simple relation between the nuclear level density parameter and atomic mass number $a=A / C$, where C is a constant,

$$
\begin{equation*}
T_{p} \cong T_{n}=\sqrt{\alpha E_{n} / a} \tag{5}
\end{equation*}
$$

where it is assumed that E_{n} substantially exceeds the $Q_{(n, p)}$ value.
Using Eqs. (4) and (5) one can obtain the approximate expression for $\sigma_{(n, p)}^{\mathrm{eq}}$

$$
\begin{equation*}
\sigma_{(n, p)}^{\mathrm{eq}}=\sigma_{\mathrm{non}}\left(1-P^{\mathrm{pre}}\right) \exp \left[\frac{A^{1 / 2}}{\left(C \alpha E_{n}\right)^{1 / 2}}\left(Q_{(n, p)}-V_{p}\right)\right] . \tag{6}
\end{equation*}
$$

2.3. The general form of the systematics

According to the semi-empirical mass formula the energy of the (n, p) reaction is approximately equal to

$$
\begin{equation*}
Q_{(n, p)}=\beta_{1}\left(\frac{N-Z+1}{A}\right)+\beta_{2} Z / A^{1 / 3} \tag{7}
\end{equation*}
$$

where N, Z, and A are number of neutrons, protons, and nucleons in the target nucleus, correspondingly; β_{i} are constants.

All nuclei can be optionally divided in two big groups with the dominant contribution of equilibrium and preequilibrium proton emission in the (n, p) reaction cross-section at 14.5 MeV [16]. For the first group the systematics can been obtained using Eqs. (6)-(7). For nuclei with dominant contribution of the preequilibrium emission in the (n, p) reaction cross-section, the
formula for the systematics can be derived from Eqs. (3) and (7). As the results the following 7-parametric formula is suggested for the evaluation of the cross-section for target nuclei with $Z \leqslant 50$

$$
\begin{equation*}
\sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} \exp \left(A^{0.5}\left(\alpha_{1} S+\alpha_{2} V+\alpha_{3}\right)\right) \tag{8a}
\end{equation*}
$$

for nuclei with $Z>50$

$$
\begin{equation*}
\sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} A^{\alpha_{4}}\left(\alpha_{5} S+\alpha_{6}\right)^{3} \tag{8b}
\end{equation*}
$$

where $S=(N-Z+1) / A, V=Z / A^{1 / 3}, r_{0}=1.3 \mathrm{fm}, \alpha_{i}$ are parameters.

3. Systematics of the (n, p) reaction cross-section

3.1. Incident neutrons of energy 14.5 MeV

3.1.1. Experimental data

Experimental data for the (n, p) reaction were taken from EXFOR. The data available in the energy range $14-15 \mathrm{MeV}$ were reduced to 14.5 MeV using excitation functions for the (n, p) reaction from Ref. [17].

The statistical treatment of experimental data available for a single nucleus has been performed using the method of "weighted mean" [18]

$$
\begin{equation*}
\left\langle\sigma^{\exp }\right\rangle=\frac{\sum_{j=1}^{n} \sigma_{j} /\left(\Delta \sigma_{j}\right)^{2}}{\sum_{j=1}^{n} 1 /\left(\Delta \sigma_{j}\right)^{2}}, \quad\left\langle\Delta \sigma^{\exp }\right\rangle=\max \left(\Delta \sigma_{A}, \Delta \sigma_{B}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \sigma_{A}=\left(\frac{\sum_{j=1}^{n}\left(\sigma_{j}-\langle\sigma\rangle\right)^{2} /\left(\Delta \sigma_{j}\right)^{2}}{(n-1) \sum_{j=1}^{n} 1 /\left(\Delta \sigma_{j}\right)^{2}}\right)^{1 / 2}, \quad \Delta \sigma_{B}=\left(\sum_{j=1}^{n} 1 /\left(\Delta \sigma_{j}\right)^{2}\right)^{-1 / 2} \tag{10}
\end{equation*}
$$

where $\left\langle\sigma^{\exp }\right\rangle$ and $\left\langle\Delta \sigma^{\exp }\right\rangle$ are the (n, p) reaction cross-section and its error evaluated using data of different measurements; σ_{i} and $\Delta \sigma_{i}$ is the cross-section and its error, obtained in i th experiment; n is the number of measurements performed for the nucleus,

The (n, p) reaction cross-section, $\left\langle\sigma^{\exp }\right\rangle \pm\left\langle\Delta \sigma^{\text {exp }}\right\rangle$, obtained from the analysis of experimental data for 125 nuclei with $A \geqslant 39$, are shown in Table 1.

3.1.2. Comparison of different systematics

The most advanced systematics $[6,19]$ are used for the comparison with the formula proposed, Eq. (8).

Belgaid and coauthors [19]:

$$
\begin{equation*}
\sigma_{(n, p)}=\left(A^{1 / 3}+1\right)^{2}\left[\exp \left(\alpha_{1}+\alpha_{2} S_{1}^{2}+\alpha_{3} S_{2}^{2}\right)+\left(\alpha_{4}+\alpha_{5} S_{1}^{2}+\alpha_{6} S_{1}\right)^{3}\right] \tag{11}
\end{equation*}
$$

and Konobeyev, Korovin [6]:

$$
\begin{equation*}
\sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2}\left[A^{\alpha_{1}}\left(\alpha_{2} S_{1}^{2}+\alpha_{3} S_{1}+\alpha_{4}\right)^{3}+\alpha_{5} \exp \left(\alpha_{6} S_{1}^{2}+\alpha_{7} S_{1}\right)\right] \tag{12}
\end{equation*}
$$

where $S_{1}=(N-Z+1) / A, S_{2}=(N-Z+1) / A^{4 / 3}$.

Table 1
The (n, p) reaction cross-section at the incident neutron energy 14.5 MeV obtained from the analysis of experimental data ($\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }$), the cross-section calculated using Eq. (8) with parameters from Table $2\left(\sigma_{i}^{\text {syst }}\right)$, the value of $\Sigma_{i}=\left(\left(\sigma_{i}^{\text {syst }}-\sigma_{i}^{\exp }\right) / \Delta \sigma_{i}^{\exp }\right)^{2}$ and accession numbers of the EXFOR files used for the analysis

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Z \& A \& \[
\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }(\mathrm{mb})
\] \& \(\sigma_{i}^{\text {syst }}(\mathrm{mb})\) \& \(\Sigma_{i}\) \& \multicolumn{4}{|l|}{EXFOR files} \\
\hline 18 \& 40 \& \(17.1 \pm 2.7\) \& 25.6 \& 9.80 \& 11585, \& 11554, \& 11548 \& \\
\hline 19 \& 39 \& \(132 \pm 28\) \& 230 \& 12.1 \& 21668, \& 40433, \& 13109, \& 21846 \\
\hline 19 \& 41 \& \(49.6 \pm 5.0\) \& 58.5 \& 3.16 \& \[
\begin{aligned}
\& 20835, \\
\& 41240, \\
\& 21846, \\
\& 40223
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 12957, } \\
\& 20811, \\
\& 21976,
\end{aligned}
\] \& \[
\begin{aligned}
\& 30011, \\
\& 30263, \\
\& 30336,
\end{aligned}
\] \& \\
\hline 20 \& 40 \& \(461 \pm 50\) \& 517 \& \& 21165, \& 21846 \& \& \\
\hline 20 \& 42 \& \(176 \pm 18\) \& 132 \& 6.10 \& \[
\begin{aligned}
\& 40016, \\
\& 21608, \\
\& 40223,
\end{aligned}
\] \& \[
\begin{aligned}
\& 30011, \\
\& 21976, \\
\& 20090
\end{aligned}
\] \& \[
\begin{aligned}
\& 22089, \\
\& 30115,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20198 \\
\& 31545
\end{aligned}
\] \\
\hline 20 \& 43 \& \(97.8 \pm 9.8\) \& 67.9 \& 9.29 \& \[
\begin{aligned}
\& 30011, \\
\& 30115,
\end{aligned}
\] \& \[
\begin{aligned}
\& 22089, \\
\& 31545
\end{aligned}
\] \& 20198, \& 21608, \\
\hline 20 \& 44 \& \(38.2 \pm 3.8\) \& 35.6 \& 0.465 \& \[
\begin{aligned}
\& 40016, \\
\& 20721, \\
\& 30115,
\end{aligned}
\] \& \begin{tabular}{l}
30011, \\
21608, \\
31545,
\end{tabular} \& \[
\begin{aligned}
\& 22089, \\
\& 21846, \\
\& 40223,
\end{aligned}
\] \& 22611, 21976 , 20090 \\
\hline 21 \& 45 \& \(57.0 \pm 5.7\) \& 78.6 \& 14.4 \& 11462, \& 31494, \& 30115, \& 40223 \\
\hline 22 \& 46 \& \(263 \pm 26\) \& 171 \& 12.5 \& \[
\begin{aligned}
\& 22093, \\
\& 20926, \\
\& 21300, \\
\& 11630,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20887, \\
\& 22089, \\
\& 11633, \\
\& 30660,
\end{aligned}
\] \& \[
\begin{aligned}
\& 30979, \\
\& 11631, \\
\& 20721, \\
\& 30825
\end{aligned}
\] \& \[
\begin{aligned}
\& 32592, \\
\& 30523, \\
\& 31464,
\end{aligned}
\] \\
\hline 22 \& 47 \& \(164 \pm 16\) \& 90.7 \& 21.0 \& \[
\begin{aligned}
\& 22093, \\
\& 22089, \\
\& 20721, \\
\& 30660,
\end{aligned}
\] \& \[
\begin{aligned}
\& 12956, \\
\& 11610, \\
\& 31464, \\
\& 30810,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20986, \\
\& 11631, \\
\& 30979, \\
\& 40226
\end{aligned}
\] \& \[
\begin{aligned}
\& 13133, \\
\& 30825, \\
\& 11630,
\end{aligned}
\] \\
\hline 22 \& 48 \& \(64.6 \pm 6.5\) \& 48.7 \& 5.95 \& \[
\begin{aligned}
\& 22093, \\
\& 21941, \\
\& 32592, \\
\& 11631, \\
\& 20721, \\
\& 31496, \\
\& 30707, \\
\& 40226
\end{aligned}
\] \& \[
\begin{aligned}
\& 12956, \\
\& 22214, \\
\& 30979, \\
\& 12977, \\
\& 20815, \\
\& 11630, \\
\& 30804,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20887, \\
\& 13133, \\
\& 11494, \\
\& 21300, \\
\& 20931, \\
\& 30336, \\
\& 30810,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20986, \\
\& 30523, \\
\& 11610, \\
\& 22089, \\
\& 31464, \\
\& 30660, \\
\& 30825,
\end{aligned}
\] \\
\hline 22 \& 49 \& \(34.1 \pm 3.4\) \& 26.5 \& 4.97 \& \[
\begin{aligned}
\& \text { 11631, } \\
\& 30707,
\end{aligned}
\] \& \[
\begin{aligned}
\& 20721, \\
\& 40226
\end{aligned}
\] \& 11630, \& 30336, \\
\hline 22 \& 50 \& \(13.3 \pm 1.3\) \& 14.6 \& 0.997 \& \[
\begin{aligned}
\& 22215, \\
\& 30648, \\
\& 20811, \\
\& 30336, \\
\& 40226
\end{aligned}
\] \& \[
\begin{aligned}
\& 22281, \\
\& 22089, \\
\& 11633, \\
\& 30660,
\end{aligned}
\] \& \[
\begin{aligned}
\& 22433, \\
\& 30978, \\
\& 21976, \\
\& 30707,
\end{aligned}
\] \& \[
\begin{aligned}
\& 21901, \\
\& 11631, \\
\& 11630, \\
\& 30810,
\end{aligned}
\] \\
\hline 23 \& 51
5
52 \& \(26.7 \pm 2.7\) \& 31.2

65.8 \& 2.77

3.85 \& 12956, 22089, 30263, 20931, 12969, 30707, \& $$
\begin{aligned}
& 21343, \\
& 22703, \\
& 30562, \\
& 21893, \\
& 20799, \\
& 40226,
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 22156, \\
& 21824, \\
& 20721, \\
& 30654, \\
& 30336,
\end{aligned}
$$
\]

\hline 24 \& 52 \& 81.9 ± 8.2 \& 65.8 \& 3.85 \& \[
$$
\begin{aligned}
& 40433, \\
& 22433, \\
& 30263, \\
& 31464,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12958, \\
& 11536, \\
& 30812, \\
& 11132,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11464, \\
& 22089, \\
& 20673, \\
& 11657,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 22187, \\
& 30978, \\
& 20721, \\
& 30013,
\end{aligned}
$$
\]

\hline
\end{tabular}

Table 1 (continued)

Z	A	$\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }(\mathrm{mb})$	$\sigma_{i}^{\text {syst }}(\mathrm{mb})$	Σ_{i}	EXFOR files			
24	53	42.6 ± 4.3	36.6	1.97	$\begin{aligned} & 30336, \\ & 41321 \end{aligned}$	30707,	30810,	31161,
					22187,	22433,	30978,	30812,
					20673,	20721,	21936,	21976,
24	54	16.5 ± 1.6	20.5	6.34	$\begin{aligned} & 31464 \\ & 30810 \\ & 22215 \end{aligned}$	11132,	11657,	30336,
						41321,		
						$22281,$	$22433,$	$30812,$
					$\begin{aligned} & 20673, \\ & 30810, \end{aligned}$	$\begin{aligned} & 20721, \\ & 41321 \end{aligned}$	21936,	11657,
25	55	32.2 ± 7.7	42.7	1.86	$\begin{aligned} & 20903, \\ & 20396, \\ & 20961, \\ & 11722, \\ & 30979, \\ & 20841, \\ & 31496, \end{aligned}$	31039 ,	30013 ,	30336
26	54	323 ± 32	282	1.62		11721,	22093,	
						21352,	22214,	41118,
						22089,	41240,	30671,
						10309,	12977,	10022,
						13586,	20554,	21936,
						31459,	41321	
26	56	110 ± 11	87.9	4.05	11703	21923,	22093 ,	11696,
					10417,	11474,	12956,	20280,
					21352,	21487,	22214,	41118,
					11701,	30483,	10289,	11494,
					30562,	31479,	20377,	22089,
					22312,	41240,	20890,	30979,
					10309,	30993 ,	10022,	30755,
					20772,	20554,	20815,	20888,
					30676,	11715,	31524,	20798,
					10835,	11718,	20887,	21372,
					30707,	30802,	30807,	40223,
					41313,	21419		
26	57	53.5 ± 7.0	49.8	0.286	21352,	$\begin{aligned} & 22325, \\ & 20721, \end{aligned}$	10309,	11696,
					30823,		21936,	30978,
					11718			
26	58	13.1 ± 4.8	28.4	10.2	41320	21936,31449,	3097831520,	
27	59	48.7 ± 4.9	57.8	3.46	30805,			12929,22089,
					22132,	22327,	11492,	
					41240,	30979,	12977,	31039 ,
					21973,	20841,	30263,	32591,
					40136,	21936,	31464,	12969,
					11740,	11741,	31459,	40223
28	58	318 ± 32	360	1.72	20396,	31412,	31500 ,	22093,
					11696,	32585,	32593,	10836,
					20898,	20986,	21487,	
					41118,	20303,	30985,	31038, 11761,
					$\begin{aligned} & 10484, \\ & 30604, \end{aligned}$	30562,	22089,	11761, 32592,
						31455,	30979 ,	41240
					31107,	12977,	10022,	20841,
					30263,	40136,	20527,	21936,
					31524,	11740,	22618,	30811,
					31459,	40226,	22820	
28	60	142 ± 14	116	3.37	$\begin{aligned} & 20390, \\ & 40136, \\ & 41240, \end{aligned}$	$\begin{aligned} & 32593, \\ & 32577, \\ & 11696, \end{aligned}$	31495,	30979,
							20388,	22637,
							12977,	30825,
							inued on	et page)

Table 1 (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Z \& A \& \(\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }(\mathrm{mb})\) \& \(\sigma_{i}^{\text {syst }}(\mathrm{mb})\) \& \(\Sigma_{i}\) \& EXFOR \& \& \& \\
\hline 28 \& 61 \& \(62.1 \pm 6.6\) \& 67.0 \& 0.556 \& \begin{tabular}{l}
20527, \\
22657, \\
40008, \\
40136, \\
31524, \\
22820
\end{tabular} \& \[
\begin{aligned}
\& 20721, \\
\& 31464, \\
\& 22637, \\
\& 20721, \\
\& 11740,
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 21634, \\
\& 40226 \\
\& 30985, \\
\& 31464, \\
\& 30811,
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline 21936, \\
\& 11696, \\
\& 30979, \\
\& 40226,
\end{aligned}
\] \\
\hline 28 \& 62 \& \(24.7 \pm 2.9\) \& 39.0 \& 24.2 \& 40008 30978, 30811, \& 40136, 11696, 40226 \& \[
\begin{aligned}
\& 22156, \\
\& 20721,
\end{aligned}
\] \& \[
\begin{aligned}
\& 22433, \\
\& 21936,
\end{aligned}
\] \\
\hline 29 \& 63 \& \(57.6 \pm 5.8\) \& 77.5 \& 11.8 \& 22418, \& 13132 \& \& \\
\hline 29 \& 65 \& \(21.8 \pm 2.2\) \& 26.8 \& 5.19 \& \begin{tabular}{l}
11474, \\
40136, \\
41240, \\
30263, \\
21999, \\
30336, \\
21419
\end{tabular} \& \[
\begin{aligned}
\& 21343, \\
\& 11776, \\
\& 22089, \\
\& 20772, \\
\& 12969, \\
\& 30707,
\end{aligned}
\] \& \[
\begin{aligned}
\& 21352, \\
\& 11536, \\
\& 22703, \\
\& 20721, \\
\& 20799, \\
\& 31161,
\end{aligned}
\] \& \begin{tabular}{l}
31449 , \\
30562, \\
10776, \\
20888, \\
11550, \\
40009,
\end{tabular} \\
\hline 30 \& 64 \& \(171 \pm 17\) \& 153 \& 1.13 \& \[
\begin{aligned}
\& 11802, \\
\& 20748, \\
\& 13597, \\
\& 31110, \\
\& 10022, \\
\& 20673, \\
\& 20107, \\
\& 40009
\end{aligned}
\] \& \[
\begin{aligned}
\& 40016, \\
\& 20835, \\
\& 22637, \\
\& 11515, \\
\& 10776, \\
\& 20721, \\
\& 30336,
\end{aligned}
\] \& \[
\begin{aligned}
\& 22093, \\
\& 22214, \\
\& 10224, \\
\& 30979, \\
\& 30263, \\
\& 11740, \\
\& 30707,
\end{aligned}
\] \& \[
\begin{aligned}
\& 12956, \\
\& 31449, \\
\& 11494, \\
\& 31460, \\
\& 31500, \\
\& 13136, \\
\& 31459,
\end{aligned}
\] \\
\hline 30

30 \& 66
67 \& 72.2 ± 7.2

49.8 ± 6.0 \& 52.8

31.4 \& 7.24

9.40 \& $$
\begin{aligned}
& 40016, \\
& 30642, \\
& 11536, \\
& 30263, \\
& 20887, \\
& 40016, \\
& 13044, \\
& 40009
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 20280, \\
& 22187, \\
& 30978, \\
& 20673, \\
& 30336, \\
& 20748, \\
& 30979,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20748, \\
& 22433, \\
& 31460, \\
& 20721, \\
& 30707, \\
& 13597, \\
& 31460,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13597, \\
& 11515, \\
& 10776, \\
& 11740, \\
& 40009 \\
& 22637, \\
& 20673,
\end{aligned}
$$
\]

\hline 30 \& 68 \& 10.9 ± 3.2 \& 18.8 \& 6.12 \& $$
\begin{aligned}
& 30978, \\
& 21976
\end{aligned}
$$ \& 22433, \& 21902, \& 31460,

\hline 31 \& 69 \& 35.8 ± 3.6 \& 36.7 \& 0.0639 \& 21291, \& 40009 \& \&

\hline 31 \& 71 \& 18.3 ± 1.8 \& 13.4 \& 7.30 \& 20748, \& 20721, \& 40009 \&

\hline 32 \& 70 \& 91.9 ± 9.2 \& 71.1 \& 5.14 \& 20748, \& 31434, \& 40009 \&

\hline 32 \& 72 \& 33.7 ± 3.4 \& 26.0 \& 5.16 \& \[
$$
\begin{aligned}
& 20748, \\
& 20721,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11825, \\
& 20770,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 22637, \\
& 40009
\end{aligned}
$$
\] \& 31434,

\hline 32 \& 73 \& 22.1 ± 2.2 \& 15.9 \& 8.03 \& 20748, 31434, 40009 \& \[
$$
\begin{aligned}
& 31491, \\
& 22291,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11825, \\
& 20721,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 22637, \\
& 20770,
\end{aligned}
$$
\]

\hline 32 \& 74 \& 11.4 ± 1.1 \& 9.75 \& 2.25 \& \[
$$
\begin{aligned}
& 20748, \\
& 20770,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11825, \\
& 40009
\end{aligned}
$$
\] \& 31434, \& 22291,

\hline 32 \& 76 \& 3.21 ± 0.43 \& 3.75 \& 1.59 \& 22325, \& 20770 \& \&

\hline 33 \& 75 \& 19.7 ± 2.0 \& 18.7 \& 0.255 \& \[
$$
\begin{aligned}
& 20289, \\
& \text { 10157, } \\
& 30263, \\
& 30707,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20748, \\
& 22637, \\
& 22291, \\
& 40009
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 20898, \\
& 20303, \\
& 21426,
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 11462, \\
& 10776, \\
& 30336,
\end{aligned}
$$
\]

\hline
\end{tabular}

Table 1 (continued)

Z	A	$\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }(\mathrm{mb})$	$\sigma_{i}^{\text {syst }}$ (mb)	Σ_{i}	EXFOR files			
34	74	121 ± 12	94.9	4.72	$\begin{aligned} & 20034, \\ & 41424, \\ & 40227, \end{aligned}$	20748,	20898,	11722,
						$\begin{aligned} & 32108, \\ & 40009 \end{aligned}$	20721,	31496,
34	76	53.1 ± 5.3	35.6	10.9	20748,	11722,	41424,	32108,
					$\begin{aligned} & 22291, \\ & 40009 \end{aligned}$	20721,	31496,	40227,
34	77	40.0 ± 4.0	22.0	20.3	20748,	32108,	20721,	40009
34	78	19.1 ± 1.9	13.7	8.22	20748,	$\begin{aligned} & 11722, \\ & 20721, \end{aligned}$	$\begin{aligned} & 41424, \\ & 31496, \end{aligned}$	$\begin{aligned} & 32108, \\ & 40227, \end{aligned}$
					$\begin{aligned} & 22291, \\ & 40009 \end{aligned}$			
35	81	24.0 ± 2.4	10.1	33.5	20107,	40009		
37	87	9.18 ± 1.01	5.77	11.4	10157,	$\begin{aligned} & 22637, \\ & 21999, \end{aligned}$	$\begin{aligned} & 31409, \\ & 10088, \end{aligned}$	$\begin{aligned} & 20811, \\ & 21659, \end{aligned}$
					$\begin{aligned} & 20721, \\ & 30336 \end{aligned}$			
38	84	100.0 ± 10.0	65.3	12.0	20721,	22192		
38	86	41.3 ± 4.1	26.1	13.7	40016,	$\begin{aligned} & 11462, \\ & 22156, \end{aligned}$	22433,	40223
38	88	13.2 ± 1.3	10.7	3.84	40016,			10157,
					21115,	30263 ,	20721,	21886,
					10088,	30336,	30707,	40223
39	89	22.7 ± 3.6	19.6	0.757	11504,	$\begin{aligned} & 31532, \\ & 40223 \end{aligned}$	11462,	31494,
					30115,			
40	90	44.1 ± 4.4	35.7	3.60	40016,	$\begin{aligned} & 11896, \\ & 20513, \end{aligned}$	$\begin{aligned} & 11462, \\ & 40226 \end{aligned}$	31330,
					11856,			
40	91	31.7 ± 3.2	23.0	7.43	40016,	11896,	20513 30985,	
40	92	19.4 ± 1.9	14.8	5.76	40016,	$\begin{aligned} & 11896, \\ & 41240, \\ & 20513, \\ & 30336, \end{aligned}$		$\begin{aligned} & 30940, \\ & 31330, \\ & 31464, \\ & 22822, \end{aligned}$
					10145,		22089,	
					20850,		21976,	
					$\begin{aligned} & 31496, \\ & 30438 \end{aligned}$		40226,	
40	94	6.96 ± 0.70	6.27	0.966	$\begin{aligned} & 40016, \\ & 30985, \\ & 20850, \\ & 31496, \\ & 30438 \end{aligned}$	$\begin{aligned} & 11896, \\ & 22156, \\ & 20513, \\ & 30336, \end{aligned}$	$\begin{aligned} & 30574, \\ & 22089, \\ & 21976, \\ & 30740, \end{aligned}$	$\begin{aligned} & 30940, \\ & 31330, \\ & 31464, \\ & 40226, \end{aligned}$
42	94	56.0 ± 5.6	48.7	1.72	22658,	12976,	31521	
42	95	39.9 ± 4.0	31.5	4.36	31491,	$\begin{aligned} & 32601, \\ & 30809, \\ & 41321 \end{aligned}$	$\begin{aligned} & 22125, \\ & 12976, \end{aligned}$	$\begin{aligned} & 22089, \\ & 21935, \end{aligned}$
					41456,			
					20513			
42	96	23.4 ± 2.3	20.5	1.55	21141,	31491,	30576,	$\begin{aligned} & 32579, \\ & 41424, \\ & 21935, \\ & 31496, \end{aligned}$
					22125,	10145,	22089,	
					41456,	30809,	20850,	
					20513,	21999,	31464,	
					21840,	41321		
42	97	17.2 ± 1.7	13.4	4.93	31491,	10145,	22089,	41456,
					$\begin{aligned} & 30809, \\ & 41321 \end{aligned}$	20513,	21999,	21840,
42	98	4.87 ± 1.01	8.81	15.3	31281,	31459,	41321	
42	100	2.86 ± 2.14	3.85	0.212	22503,	21840		
43	99	13.6 ± 1.4	15.8	2.52	11289,	22655,	41424,	20350,
					22817			
44	96	140 ± 14	156	1.37	22637,	31437,	11923	
44	100	22.9 ± 7.1	28.3	0.570	22325,	30007		

(continued on next page)

Table 1 (continued)

Table 1 (continued)

Z	A	$\sigma_{i}^{\exp } \pm \Delta \sigma_{i}^{\exp }(\mathrm{mb})$	$\sigma_{i}^{\text {syst }}(\mathrm{mb})$	Σ_{i}	EXFOR files			
66	160	7.61 ± 0.97	6.51	1.29	20933,	31497		
66	162	3.99 ± 0.40	3.99	0.00015	$\begin{aligned} & 22348, \\ & 31497 \end{aligned}$	12131,	30674,	20716,
66	163	3.08 ± 0.31	3.02	0.0319	22348,	12131,	20716,	31497
66	164	2.48 ± 0.27	2.24	0.808	22393 ,	22340,	20716	
68	167	1.50 ± 0.45	4.09	33.1	$\begin{aligned} & 30471, \\ & 30336 \end{aligned}$	31497,	12033,	20860,
68	168	2.58 ± 0.26	3.13	4.43	$\begin{aligned} & 22393, \\ & 20860 \end{aligned}$	20716,	31497,	12033,
70	174	2.86 ± 0.29	2.43	2.19	$\begin{aligned} & 22348 \\ & 12872 \end{aligned}$	30674,	21818,	31497,
70	176	1.76 ± 0.19	1.26	6.97	30674,	22340		
71	175	5.08 ± 4.05	3.74	0.109	20595,	20716		
72	178	2.54 ± 0.25	3.34	10.1	31439,	13039		
72	180	1.94 ± 0.38	1.87	0.0357	22311,	22325		
73	181	3.55 ± 0.35	2.96	2.80	12185,	41424,	22351,	32601,
74	182	4.36 ± 0.44	4.41	0.0136	$\begin{aligned} & 22108, \\ & 12185, \\ & 31496 \end{aligned}$	$\begin{aligned} & 30671, \\ & 31484, \end{aligned}$	$\begin{aligned} & 32205, \\ & 41428, \end{aligned}$	$\begin{aligned} & 31330 \\ & 20668, \end{aligned}$
74	183	4.81 ± 0.48	3.44	8.14	12185,	41428,	20668,	31496
74	184	2.96 ± 0.30	2.63	1.22	$\begin{aligned} & 31484, \\ & 31330 \end{aligned}$	$\begin{aligned} & 22351, \\ & 20668 \end{aligned}$	$\begin{aligned} & 22089, \\ & 31496 \end{aligned}$	41428,
74	186	1.64 ± 0.16	1.42	1.94	$\begin{aligned} & 22311, \\ & 22351, \end{aligned}$	$\begin{aligned} & 22365, \\ & 20668 \end{aligned}$	41428,	31330,
75	187	4.08 ± 0.45	2.32	15.2	22637,	41240,	20721,	41406
76	188	4.95 ± 0.56	3.55	6.28	22637,	41428,	20198,	30115
76	189	6.83 ± 2.39	2.73	2.95	41428,	20721		
77	193	2.89 ± 0.77	1.80	1.99	41428,	20721		
80	199	2.87 ± 1.09	2.93	0.00320	12219,	10244		
82	208	0.883 ± 0.088	0.899	0.0335	$\begin{aligned} & 30605, \\ & 21504, \\ & 22822 \end{aligned}$	$\begin{aligned} & 22148, \\ & 40347, \end{aligned}$	$\begin{aligned} & 10244, \\ & 40136, \end{aligned}$	$\begin{aligned} & 32205, \\ & 22680, \end{aligned}$
83	209	0.780 ± 0.187	1.54	16.6	22148,	40347,	31161	

The values of free parameters in Eqs. (8), (11), (12) were obtained from the fitting to experimental cross-sections providing the minimum of the expression

$$
\begin{equation*}
\Sigma=\sum_{i=1}^{N}\left(\left(\sigma_{i}^{\text {syst }}-\sigma_{i}^{\text {exp }}\right) / \Delta \sigma_{i}^{\text {exp }}\right)^{2}, \tag{13}
\end{equation*}
$$

where $\sigma_{i}^{\text {syst }}$ is the cross-section calculated using Eqs. (8), (11), and (12); $\sigma_{i}^{\exp }$ and $\Delta \sigma_{i}^{\exp }$ are the cross-section and its error obtained from the analysis of measured data (Section 3.1.1, Table 1); N is the number of target nuclei, for which experimental data are available.

The χ^{2} value is calculated as follows

$$
\begin{equation*}
\chi^{2}=\Sigma /(N-m), \tag{14}
\end{equation*}
$$

where Σ is calculated by Eq. (13) and m is the number of free parameters of the systematics.
Results of the fitting of Eqs. (8), (11), and (12) to experimental cross-sections from Table 1 are given in Table 2.

Table 2
The results of the fitting of Eqs. (8), (11), and (12) to (n, p) reaction cross-sections obtained for 125 target nuclei from the analysis of experimental data at 14.5 MeV (Table 1)

Formula	Σ	χ^{2}	Parameters
Eq. (8)	830	6.98	$\alpha_{1}=-4.4785, \alpha_{2}=4.7174 \times 10^{-2}, \alpha_{3}=-0.27407$, $\alpha_{4}=0.75718, \alpha_{5}=-0.61348, \alpha_{6}=0.1511$
Eq. (12),	913	7.73	$\alpha_{1}=2.40, \alpha_{2}=-0.35257, \alpha_{3}=0.10577, \alpha_{4}=-5.5299 \times 10^{-3}$, Konobeyev, Korovin [6]
924	7.77	$\alpha_{5}=0.62165, \alpha_{6}=-130.59, \alpha_{7}=-11.636$ $\alpha_{1}=1.1279, \alpha_{2}=-67.502, \alpha_{3}=-883.55$, $\alpha_{4}=3.4336, \alpha_{5}=40.717, \alpha_{6}=-26.007$	
Eq. (11),			
Belgaid et al. [19]			

Fig. 1. The (n, p) reaction cross-sections for 125 nuclei with the mass number $39 \leqslant A \leqslant 209$ at the incident neutron energy 14.5 MeV obtained from the analysis of experimental data (Table 1) (open circle) and calculated by Eq. (8) with parameters from Table 2 (black circle) depending upon $(N-Z) / A$.

The comparison of different systematics shows that the formula, Eq. (8) proposed in the present work provides the best fit of experimental data. Fig. 1 shows cross-sections evaluated by Eq. (8) and experimental cross-sections from Table 1.

Table 3 shows values of other statistical factors [20], which characterize the deviation of cross-sections calculated using systematic formulas, Eqs. (8), (11), (12) from experimental data. Compared with χ^{2} (Table 2) the deviation factors from Table 3 are of secondary importance.

It should be noted that the division of nuclei on two groups with atomic number below and above 50 with the predominant contribution of the equilibrium and precompound emission (Section 2.3) is in a general agreement with calculations performed using geometry dependent hybrid precompound model and evaporation model [13,21]. The use of other critical value of atomic number, $Z_{\text {crit }}$ for the transition from Eq. (8a) to Eq. (8b) changes smoothly the value of Σ at the fitting of systematic formulas to experimental data from Table 1. For the transition from Eq. (8a) to Eq. (8b) at $Z_{\text {crit }}$ equal to 46 the Σ value is equal to 863 , at $Z_{\text {crit }}=48$ the Σ value is 819 , for

Table 3
Deviation factors [20] calculated using cross-sections predicted by various systematics Eqs. (8), (11), and (12) and experimental cross-sections from Table 1

Factors	Eq. (8)	Eq. (12), Konobeyev, Korovin [6]	Eq. (11), Belgaid et al. [19]
$N^{-1} \sum_{i=1}^{N}\left\|\sigma_{i}^{\text {exp }}-\sigma_{i}^{\text {syst }}\right\| / \sigma_{i}^{\text {exp }}$	0.317	0.319	0.325
$N^{-1} \sum_{i=1}^{N} \sigma_{i}^{\text {syst }} / \sigma_{i}^{\exp }$	1.026	1.018	1.023
$10^{\left(N^{-1} \sum_{i=1}^{N}\left[\log \left(\sigma_{i}^{\text {exp }}\right)-\log \left(\sigma_{i}^{\text {syst }}\right)\right]^{2}\right)^{0.5}}$	1.466	1.466	1.471

$Z_{\text {crit }}=50$ one gets $\Sigma=830$ (Table 2), $Z_{\text {crit }}$ equal to 52 corresponds to $\Sigma=833$, and $Z_{\text {crit }}=54$ gives the Σ value equal to 854 .

3.2. Incident neutrons of energy 20 MeV

At present time the systematics of neutron induced reaction cross-sections at 20 MeV are used for the verification and validation of evaluated activation data [22]. The first systematics at 20 MeV has been obtained in Ref. [23] using results of model calculations with the global set of model parameters. In this work the method [23] is noticeably improved.

The experimental data at 20 MeV are too scarce to be a reliable foundation of the systematics. In the present work Eq. (8) was fitted to the data at 20 MeV obtained with the help of model calculations corrected using the available experimental information.

The calculation of the (n, p) reaction cross-section at 20 MeV was performed using a preequilibrium geometry dependent hybrid model [13] and an evaporation model [14] implemented in the ALICE/ASH code [21]. The parameters of models were selected from the condition of the accurate description of experimental (n, p) reaction cross-sections at 14.5 MeV (Table 1). The obtained model parameters were used to calculate the (n, p) reaction cross-section at 20 MeV and 30 MeV (Section 3.3). The calculated cross-sections ($\sigma^{\text {eval }}$) are shown in Fig. 2 for 125 nuclei.

The systematics was obtained by minimization of Σ the value, Eq. (13), where $\sigma^{\text {eval }}$ values are used instead of $\sigma^{\exp }$ and $\sigma^{\text {syst }}$ is calculated by Eq. (8). The obtained parameters of Eq. (8) are $\alpha_{1}=-1.4772, \alpha_{2}=4.2553 \times 10^{-2}, \alpha_{3}=-0.65261, \alpha_{4}=-0.71595, \alpha_{5}=-5.1645, \alpha_{6}=$ 1.5205 .

Fig. 3 shows the example of the (n, p) reaction cross-section calculated using the systematics.

3.3. Incident neutrons of energy 30 MeV

The aim is to get an additional tool for the evaluation and verification of (n, p) reaction crosssections at intermediate energies. It seems important due to the intention to extend commonly used evaluated data files up to 60 MeV [22] and up to 150 MeV [24]. A neutron energy of 30 MeV is a reasonable limit for the systematics considering that the uncertainty of $\sigma^{\text {eval }}$ values used for the fitting of free parameters, obtained as described in Section 3.2, increases with the energy of neutrons.

At the transition to 30 MeV the importance of the preequilibrium single-proton emission increases. To estimate the (n, p) reaction cross-section one should consider the possible particle emission from the $(Z-1, A)$ nucleus formed after the escape of the first proton. Assuming that the neutron emission from this nucleus is the most probable, after the integration of Eq. (2) from

Fig. 2. Cross-sections of the (n, p) reaction induced by 20 MeV and 30 MeV calculated for 125 nuclei with the mass number $39<A<209$ using the preequilibrium model and the evaporation model implemented in the ALICE/ASH code [21]. The parameters of models have been obtained from the condition of the accurate description of the experimental (n, p) reaction cross-sections at 14.5 MeV (Table 1).
the energy $\alpha E_{n}+Q_{(n, p)}-Q_{n}^{\prime}$ to $\alpha E_{n}+Q_{(n, p)}$ the approximate expression for the precompound component of the (n, p) reaction cross-section can be written in the following form

$$
\begin{align*}
\sigma_{(n, p)}^{\mathrm{pre}}= & \sigma_{\mathrm{non}}\left(E_{n}\right) \frac{\left(2 S_{p}+1\right) \mu_{p} R^{2}}{\pi^{2} \hbar^{2} g^{4} E_{0}^{4}|M|^{2}}\left[\left(\alpha E_{n}+Q_{(n, p)}-V_{p}\right)^{3}\right. \\
& \left.-\left(\alpha E_{n}+Q_{(n, p)}-V_{p}-Q_{n}^{\prime}\right)^{2}\left(\alpha E_{n}+Q_{(n, p)}-V_{p}+2 Q_{n}^{\prime}\right)\right] \tag{15}
\end{align*}
$$

where the Q_{n}^{\prime} is the separation energy of neutron from the nucleus $(Z-1, A)$, which can be approximately calculated as

$$
\begin{equation*}
Q_{n}^{\prime}=\gamma_{1}^{\prime}\left(\frac{N-Z+1}{A}\right)^{2}+\gamma_{2}^{\prime}\left(\frac{N-Z+1.5}{A}\right)+\gamma_{3}^{\prime} Z^{2} / A^{4 / 3}+\gamma_{4}^{\prime} / A^{1 / 3}+\gamma_{5}^{\prime} \tag{16}
\end{equation*}
$$

where γ_{i}^{\prime} are constants.

It is seen that the cross-section, Eq. (15) is expressed by polynomial functions of $Q_{(n, p)}$ and Q_{n}^{\prime}. Taking into account the essential dependence of these values from $N-Z+1 / A$, the following x-parametric formula is suggested for the systematics at 30 MeV

$$
\begin{equation*}
\sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} A^{\alpha_{1}}\left(\alpha_{2} S^{3}+\alpha_{3} S^{2}+\alpha_{4} S+\alpha_{5} Z / A^{1 / 3}+\alpha_{6}\right) \tag{17}
\end{equation*}
$$

where $S=(N-Z+1) / A, P=(N-Z+1.5) / A, r_{0}=1.3 \mathrm{fm}, \alpha_{i}$ are parameters.
The fitting of Eq. (17) to the $\sigma^{\text {eval }}$ values obtained at 30 MeV for 125 nuclei (Fig. 2) gives the following values of parameters: $\alpha_{1}=0.33239, \alpha_{2}=-2.1417, \alpha_{3}=1.0792, \alpha_{4}=-0.19660$, $\alpha_{5}=-1.7282 \times 10^{-4}, \alpha_{6}=1.6253 \times 10^{-2}$.

Fig. 3 shows the (n, p) reaction cross-section evaluated using the systematics for ${ }^{51} \mathrm{~V}$ and ${ }^{56} \mathrm{Fe}$.

Fig. 3. The (n, p) reaction cross-section for ${ }^{51} \mathrm{~V}$ and ${ }^{56} \mathrm{Fe}$ evaluated by the systematics obtained in the present work (black circle) and experimental data from EXFOR (open circle).

4. Conclusion

A new systematics for the (n, p) reaction cross-section at the incident neutron energy 14.5, 20 , and 30 MeV is suggested. The preequilibrium exciton model, the evaporation model and a semi-empirical mass formula were used to get analytical expressions for the evaluation of the cross-section.

A new compilation and analysis of experimental (n, p) reaction cross-section at neutron incident energies $14-15 \mathrm{MeV}$ has been performed. The comparison of different systematics shows that the formula proposed in the present work gives the best description of experimental data.

The obtained systematics are for 14.5 MeV incident neutrons:

$$
\begin{align*}
& \sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} \exp \left(A^{0.5}\left(-4.4785 S+4.7174 \times 10^{-2} V-0.27407\right)\right) \\
& \quad \text { if } Z \leqslant 50 \tag{18a}\\
& \sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} A^{0.75718}(-0.61348 S+0.1511)^{3} \quad \text { if } Z>50 \tag{18b}
\end{align*}
$$

for 20 MeV neutrons:

$$
\begin{align*}
& \sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} \exp \left(A^{0.5}\left(-1.4772 S+4.2553 \times 10^{-2}-0.65261\right)\right) \\
& \quad \text { if } Z \leqslant 50 \tag{19a}
\end{align*}
$$

$$
\begin{equation*}
\sigma_{(n, p)}=\pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} A^{-0.71595}(-5.1645 S+1.5205)^{3} \quad \text { if } Z>50 \tag{19b}
\end{equation*}
$$

for 30 MeV neutrons:

$$
\begin{align*}
\sigma_{(n, p)}= & \pi r_{0}^{2}\left(A^{1 / 3}+1\right)^{2} A^{0.33239}\left(-2.1417 S^{3}+1.0792 S^{2}-0.19660 S\right. \\
& \left.-1.7282 \times 10^{-4}+1.6253 \times 10^{-2}\right) \tag{20}
\end{align*}
$$

where $S=(N-Z+1) / A, V=Z / A^{1 / 3} ; r_{0}$ is equal to 1.3 fm , which corresponds to the πr_{0}^{2} value equal to $53.093 \mathrm{mb} ; N, Z$, and A are the number of neutrons, protons, and nucleons in the target nucleus, correspondingly.

The systematics obtained can be used for the evaluation of the (n, p) reaction cross-section for nuclei $A \geqslant 40$. The best result one should expect for the range of target nuclei $0.025<$ $(N-Z) / A<0.22$. Outside of these limits the systematics, Eqs. (18)-(20) should be used with care.

References

[1] V.N. Levkovskii, Sov. Phys. JETP 45 (1963) 305.
[2] V.M. Bychkov, A.B. Pashchenko, V.I. Plyaskin, Jadernye Konstanty (Nuclear Constants) 4 (31) (1978) 48; V.M. Bychkov, V.N. Manokhin, A.B. Pashchenko, V.I. Plyaskin, Jadernye Konstanty (Nuclear Constants) 1 (32) (1979) 27.
[3] Z. Zhao, D. Zhou, Nucl. Sci. Eng. 99 (1988) 367.
[4] A.Yu. Konobeyev, Yu.A. Korovin, P.E. Pereslavtsev, Nucl. Instrum. Methods Phys. Res. B 93 (1994) 409.
[5] A.Yu. Konobeyev, Yu.A. Korovin, Nucl. Instrum. Methods Phys. Res. B 94 (1994) 119.
[6] A.Yu. Konobeyev, Yu.A. Korovin, Nucl. Instrum. Methods Phys. Res. B 103 (1995) 15.
[7] A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Nucl. Instrum. Methods Phys. Res. B 108 (1996) 233.
[8] A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Nuovo Cimento A 111 (1998) 445.
[9] A.Yu. Konobeyev, Yu.A. Korovin, Nuovo Cimento A 112 (1999) 1001.
[10] M. Blann, Annu. Rev. Nucl. Sci. 25 (1975) 123.
[11] T. Ericson, Adv. Phys. 9 (1960) 425.
[12] F.C. Williams, Phys. Lett. B 31 (1970) 184.
[13] M. Blann, H.K. Vonach, Phys. Rev. C 28 (1983) 1475.
[14] V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57 (1940) 472.
[15] E. Gadioli, P.E. Hodgson, Pre-Equilibrium Nuclear Reactions, Clarendon, Oxford, 1992.
[16] A.I. Dityuk, A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, in: Proceedings of the International Conference Nuclear Data for Science and Technology, Trieste, Italy, May 1997, p. 979.
[17] J.-Ch. Sublet, A.J. Koning, R.A. Forrest, J. Kopecky, JEFDOC-982, November 2003.
[18] H.J. Wollersheim, Experimental Errors in Science, http://www-linux.gsi.de/~wolle/.
[19] M. Belgaid, A. Tassadit, F. Kadem, A. Amokrane, Nucl. Instrum. Methods Phys. Res. B 239 (2005) 303.
[20] C.H.M. Broeders, A.Yu. Konobeyev, Nucl. Instrum. Methods Phys. Res. A 550 (2005) 241.
[21] C.H.M. Broeders, A.Yu. Konobeyev, Yu.A. Korovin, V.P. Lunev, M. Blann, ALICE/ASH-pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/ FZKA7183.pdf.
[22] R.A. Forrest, J. Kopecky, J.-Ch. Sublet, The European Activation File: EAF-2005 Cross Section Library, UKAEA FUS 515, January 2005.
[23] A.Yu. Konobeyev, Yu.A. Korovin, At. Energy 85 (1998) 556.
[24] M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale, H.G. Hughes, A.J. Koning, R.C. Little, R.E. MacFarlane, R.E. Prael, L.S. Waters, Nucl. Sci. Eng. 131 (1999) 293.

[^0]: * Corresponding author. Tel.: +49 7247822638.

 E-mail address: konobeev@irs.fzk.de (A.Yu. Konobeyev).

