Investigation of radiation damage rates in a LWR vessel using results of molecular dynamics simulations

C.H.M. Broeders and A.Yu. Konobeyev Institute for Reactor Safety, FZK, Postfach 3640, 76021 Karlsruhe, Germany

Introduction

The idea is to get displacement cross-sections using

- binary collision approximation model (BCA)
- molecular dynamics simulations (MD).

The displacement cross-section is equal to

$$\sigma_{d}(E_{p}) = \sum_{i} \int_{E_{d}}^{T_{i}^{max}} \frac{d\sigma(E_{p}, T_{i}, Z_{T}, A_{T}, Z_{i}, A_{i})}{dT_{i}} \nu(T_{i}) dT_{i} ,$$

 $d\sigma/dT_i$ is the recoil energy distribution,

 $v(T_i)$ is the number of Frenkel pairs produced by PKA, $v(T) = \eta(T) \cdot N_{NRT}(T)$,

 N_{NRT} is the number of defects predicted by NRT,

 $N_{\text{NRT}} = 0.8 \cdot T_{\text{dam}} / (2E_{\text{d}})$, T_{dam} is the "damage energy"

 $\eta(T)$ is the defect production efficiency.

Calculation of the number of defects produced under irradiation

The BCA calculations are performed up to a certain "critical" energy of the ion, T_{crit} .

Below $T_{\rm crit}$ the BCA calculation is stopped and the number of defects is evaluated according to results of the MD simulation.

For the self-ion irradiation of iron the T_{crit} was taken equal to 61.2 keV, which corresponds to maximal energy of $E_{MD} \approx T_{dam} = 40$ keV.

Defect production efficiency calculated for iron. The maximal T_{dam} (NRT) energy corresponds to the primary energy of Fe-ions equal to 20 MeV.

Displacement cross-sections for neutron irradiation

The elastic displacement cross-section for ⁵⁶Fe prepared using data from JEFF-3.1

Averaged displacement cross-sections calculated using the NRT model.

Library	$<\sigma_d>(b\cdot keV)$
ENDF/B-VII	18.31
ENDF/B-VI(8)	18.31
JEFF-3.1	17.98
JENDL-3.3	18.73
BROND-2.2	18.46

Averaged displacement cross-sections calculated using results of the MD simulations with η =constant above $T_{dam} = 40 \text{ keV}$

Library	$<\sigma_d>(b\cdot keV)$	$<\sigma_d>/<\sigma_d>(NRT)$
ENDF/B-VII	6.02	0.329
ENDF/B-VI(8)	6.02	0.329
JEFF-3.1	5.89	0.328
JENDL-3.3	6.15	0.328
BROND-2.2	6.15	0.333

Averaged displacement cross-sections calculated using BCA,MD

Library	$<\sigma_d>(b\cdot keV)$	<\sigma_d >/<\sigma_d >(NRT)
ENDF/B-VII	6.68	0.365
ENDF/B-VI(8)	6.68	0.365
JEFF-3.1	6.53	0.363
JENDL-3.3	6.83	0.365
BROND-2.2	6.80	0.369