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Abstract
ADS are considered as an option for the irradiation facility in partitioning and transmutation
concepts for highly radioactive waste from spent nuclear fuel. Due to the hard neutron
energy spectrum and the subcriticality of the reactor ADS provide a good compromise
between transmutation performance and safety aspects. For the safe operation, but also
for the overall optimization of the facility, the determination of the subcriticality level is
essential.

To investigate experimental methods in Pulsed Neutron Source (PNS) experiments for
the determination of the subcriticality level the ADS experiment YALINA-Thermal is
thoroughly analyzed in this work. The experiment has been performed from 2005-2010 in
Minsk, Belarus.

Most of the related experimental methods rely on point kinetic equations. This approach
introduces two main approximations. Firstly, the point kinetic equation cannot describe
the transition of the neutron distribution from the source operation to the source shutdown.
After shutdown, the neutron population would redistribute to establish the fundamental
decay mode. This violates the point kinetic assumption of neutron flux spectra constant
in time. Secondly, to calculate kinetic parameters like the neutron mean generation time
and the effective delayed neutron fraction the neutron flux distribution of the effective
multiplication factor equation is typically used, which is equivalent to an artificial critical
steady-state reactor. However, it is the time-dependence of the decay of the neutron
populations including their redistribution in space and energy, which affects the analyzed
kinetic parameters. Consequently, this work aims for the accurate simulation of these
phenomena with particular emphasis on the quality of the effective neutron cross sections.

In this work new microscopic master libraries based on the JEFF 3.1, JEFF 3.1.1
and ENDF/B VII.0 evaluations are developed with a general purpose 350 energy groups
structure for the deterministic reactor physics code system KANEXT.

The time-dependent transport code TORT-TD developed by Gesellschaft für Anlagen-
und Reaktorsicherheit (GRS) is extended in this work for a time-dependent external neutron
source. This new option and the fully implicit time integration scheme provides a very
accurate simulation of PNS experiments considering non-asymptotic neutron distributions
and delayed neutrons. After neutron source shutdown the code allows for the decay of the
neutron populations based on the physical principles. These time-dependent neutron fluxes
are used for the calculation of time-dependent kinetic parameters.

The simulation of the YALINA-Thermal experiment with the extended TORT-TD code
and the new cross section data shows, that the impact of delayed neutrons manifests
before the fundamental decay mode is established and thus needs to be considered in the
experimental evaluation. Comparing the neutron mean generation time calculated with the
neutron flux of the effective multiplication factor solution and with the time-dependent flux
yields a 16% difference. The effective delayed neutron fraction - as expected - is indifferent
to the above method, as the delayed neutron yield of the main fissionable isotope 235

92U is
constant below 0.01MeV.
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Zusammenfassung
Zur Reduzierung von Lagerdauer und -kapazität sowie Radiotoxizität von hoch radioaktivem
Abfall größtenteils aus der zivilen Nutzung der Kernenergie in Kernkraftwerken werden
weltweit im Rahmen von Transmutations- und Partitionierungsstrategien Beschleuniger
getriebene Systeme, im Englischen ADS, als Bestrahlungseinrichtung diskutiert. ADS bieten
mit Verweis auf das harte Neutronenspektrum und auf die Unterkritikalität des Reaktors
einen guten Kompromiss zwischen Transmutationsleistung und Sicherheitseigenschaften. Für
den sicheren Betrieb, aber auch für die Optimierung der Gesamtanlage, ist die Überwachung
der Unterkritikalität essenziell.

Um vorgeschlagene, experimentelle Methoden mit gepulsten Neutronenquellen, im Engli-
schen Pulsed Neutron Source (PNS), zur Kritikalitätsüberwachung zu qualifizieren, wird in
dieser Arbeit das ADS-Experiment YALINA-Thermal eingehend analysiert, das zwischen
2005 und 2010 in Minsk, Weißrussland, durchgeführt wurde.

Praktisch alle experimentellen Methoden zur Bestimmung der Unterkritikalität beruhen
auf dem Ansatz der Punktkinetik. Ein Nachteil dieser Näherung besteht darin, dass die
Punktkinetik den instationären Übergang vom kurzzeitigen Ein- und Abschalten der Neutro-
nenquelle und dem nachgelagerten Abklingen der Neutronenpopulationen nicht beschreiben
kann. Dies führt dazu, dass die Voraussetzung der zeitlich konstanten Neutronenflussspek-
tren im betrachteten Zeitfenster nicht gegeben ist. Des Weiteren werden typischerweise
zur Berechnung der Punktkinetikparameter wie der effektiven Neutronengenerationsdauer
oder des effektiven Anteils der verzögerten Neutronen die Neutronenflussspektren der stati-
schen Lösung der Boltzmann-Transportgleichung für den effektiven Multiplikationsfaktor
verwendet. Dabei hat gerade die räumliche und energetische Reorganisation der Neutronen
während des Abklingvorgangs einen maßgeblichen Einfluss auf die kinetischen Parame-
ter. Diese Arbeit zielt auf die genaue Beschreibung dieser Phänomene unter besonderer
Berücksichtigung der Qualität der effektiven Neutronenwirkungsquerschnitte ab.

In dieser Arbeit werden neue, 350 Energiegruppen umfassende, mikroskopische Master-
bibliotheken basierend auf den JEFF 3.1, JEFF 3.1.1 und ENDF/B VII.0 Evaluationen für
das modulare, deterministische Programmsystem KANEXT entwickelt.

Für die zeitabhängige Untersuchung wird im Rahmen dieser Arbeit das deterministi-
sche Neutronentransportprogramm TORT-TD, das von der GRS entwickelt wird, um eine
zeitabhängige Option für Quellneutronen erweitert. Aufgrund der vollimpliziten Zeitin-
tegration kann eine sehr genaue zeitabhängige Simulation eines gepulsten Experiments
unter Berücksichtigung von nicht-asymptotischen Neutronenfeldern und der Bilanzierung
der lokalen verzögerten Neutronen erfolgen. Darüber hinaus lässt dieses Verfahren nach
Beendigung des Pulses das Abklingen der Neutronenpopulationen zu, sodass aus diesen
Spektren zeitabhängige kinetische Parameter berechnet werden können.

Es zeigt sich in der Nachrechnung der YALINA-Thermal Experimente mit dem erweiter-
ten TORT-TD Programm und den neuen Wirkungsquerschnittsdaten, dass die Ausbildung
des Hauptabklingmodus vom Einfluss der verzögerten Neutronen überlagert wird und
damit in der experimentellen Auswertung berücksichtigt werden muss. Es ergibt sich für
die Neutronengenerationsdauer, berechnet mit den statischen Flussspektren sowie mit
den zeitabhängigen Flussspektren, ein Unterschied von 16%. Für den effektiven Anteil
der verzögerten Neutronen ist erwartungsgemäß kein Einfluss festgestellt worden, da die
Ausbeute der verzögerten Neutronen unterhalb von etwa 0.01MeV für den Hauptspaltstoff
235
92U konstant verläuft.
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Chapter 1

Introduction
One of the key issues in the use of nuclear energy is the long-term storage of highly

radioactive and radiotoxic spent fuel. For almost two decades a remarkable endeavor was

put to investigate Minor Actinides (MA) and Long-Lived Fission Products (LLFP) of spent

fuel. A significant reduction of the long-term spent fuel toxicity and storage period can

be achieved by partitioning and transmuting these nuclei. It was shown that a potential

reduction from 100 000 y to about 1000 y is feasible, if it is related to the radiotoxicity of

natural uranium depending on fuel cycle concepts [3, 4].

Within the relevant reactors for waste incineration one usually counts two types: fast

critical reactors and fast spectra Accelerator Driven System (ADS). The above mentioned

first type benefits from its evolutionary design based on experience of former fast reactor

concepts like the Enrico Fermi fast breeder reactor in the United States, Super-Phénix

1 and 2 in France, MONJU in Japan or SNR in Germany [5, 6]. Their disadvantage

as far as transmutation is concerned is that MA deteriorate the safety characteristics

namely the delayed neutron fraction and feedback coefficients [7]. On the other hand,

the ADS cores suffer obviously from lack of existing experience. The feasibility of the

combination of a large proton beam spallation source with a subcritical core has still to be

demonstrated. Nevertheless, the attractiveness of the ADS type originates in its enhanced

safety characteristics due to its subcriticality.

The intense scientific work on ADS was originally triggered by a LANL work [8], where

a subcritical Molten Salt reactor driven by a spallation neutron source with very high

thermal neutron flux was investigated for waste transmutation, and an US NRC report on

transmutation with one dedicated ADS concept [9,10]. In Europe the ADS concept was

driven initially by the energy amplifier concept of Carlo Rubbia [11] as a "totally safe" ADS

alternative to the critical reactor designs. Later on, it was converted into the transmutation

concept parallel to the developments in the US. Since then several projects were launched

to deal with the importance of transmutation features as can be seen in table 1.1.

An important additional project YALINA was initiated in the Joint Institute for Power

and Nuclear Research (JIPNR) located at Sosny nearby Minsk, Belarus. The project was

embedded also in an International Atomic Energy Agency (IAEA) Coordinated Research

Project (CRP) and moreover in the ECATS domain of the EUROTRANS project (see

table 1.1). It was the first of its kind in the sense of coupling an external neutron source

with a multiplying medium in a subcritical, thermal system with fresh enriched uranium

fuel and large graphite reflector.
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Table 1.1: European projects on ADS research

Project Period Aim

IABAT 1996 - 1999 Broad assessment of system and fuel cycle issues, nuclear
and material data and accelerator technology [12]

MUSE 1996 - 2004 Neutron physical characterization of a fast zero-power ADS
in measurement and simulation [13,14]

TRADE 2002 - 2004 Investigation of feedback effects in a subcritical, thermal low
power TRIGA reactor coupled with a spallation neutron
source (abandoned for financial reasons) [15]

MEGAPIE 2001 - 2006 Target physics and design of intense proton beam spallation
neutron sources [16]

PDS-XADS 2001 - 2004 Preliminary design studies for an experimental ADS with
80MW thermal power [17]

IP-
EUROTRANS

2005 - 2010 The large European project governing 5 technical and sci-
entific domains (DM):

DM1 DESIGN: Development of reference designs under
which the short-term demonstration of transmuta-
tion of a small scale ADS (XT-ADS) and the long-
term demonstration of industrial scale transmutation
(EFIT)

DM2 ECATS: Experimental reactivity assessment with
the projects YALINA-Booster and GUINEVERE as
continuation of the MUSE experiments for subcriti-
cality monitoring with pulsed, continuous and inter-
rupted source [18]

DM3 AFTRA: Investigation of alternative uranium-free
fuel to support partitioning aims

DM4 DEMETRA: Assessment of heavy liquid metal
coolants suitable for core and target cooling and its
thermal-hydraulic impacts

DM5 NUDATRA: Examination and completion of the
nuclear data needs for transmutation

FREYA 2011 - 2015 Continuation of GUINEVERE for subcritical monitoring of
ADS and accompanying the MYRRHA project

MYRRHA 2010 - 2023 Building a multipurpose irradiation facility with critical and
ADS operation; envisaged to be commissioned in the year
2023
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Chapter 1. Introduction

The main idea was to launch experiments for the determination of the subcriticality

level. The motivation lays in the fact that the common experimental methods are either

for critical keff ' 1 or for deep subcritical, unreflected systems keff < 0.9. Contrarily,

ADS reactors are foreseen to operate at about 0.95 ≤ keff ≤ 0.98 with optimized neutron

economy by means of reflectors. Mathematically, the governing reactor physics equation of

a critical reactor is a homogeneous eigenvalue equation, while ADS are described by an

inhomogeneous fixed source equation. And finally, in the Pulsed Neutron Source (PNS)

experiment, the transition of both the shortly operating neutron source and the subcritical,

source-free decay of the neutron population are encountered.

The reactivity control and monitoring is however essential, since in the initial designs

no control rods were foreseen. Moreover, the deployment of fuel with MA constitutes

a reduction in safety characteristics, which emphasizes once more the need for accurate

evaluation of the operating reactivity level.

The experiment-based YALINA-Thermal benchmark was adapted to provide a com-

prehensive investigation involving nuclear data and methods of time-dependent neutron

propagation in multiplying medium. Based on the YALINA-Thermal experiments this study

aims at analyzing current methods for the calculation of subcritical kinetic parameters such

as mean neutron generation time, effective delayed neutron fraction and reactivity as well

as exploring a new innovative three-dimensional neutron transport solution for the accurate

evaluation of the mentioned parameters.

The work is organized in the following manner:

Chapter 2 The reactor physical theory is summarized in view of the experimental methods

for reactivity determination, its application to the experimental situation and the

demands for an accurate simulation including the neutron source operation, instation-

ary effects and the transition into the quasi-static delayed neutron background. As a

final requirement the need for a deterministic time-dependent transport code based

on a direct time-dependent method is formulated.

Chapter 3 This chapter deals with the preparation of effective cross sections from the

underlying general nuclear data evaluations. In this context new microscopic fine-

group master libraries are created suitable for the homogenization procedure in the

deterministic reactor physics code system KANEXT. The peculiarities related to the use

in multigroup transport codes are analyzed. The validation is performed on the basis

of a code-to-code comparison with a Monte Carlo (MC) based solution on pin and core

level. From this static, asymptotic solution the classic effective kinetic parameters

are calculated according to perturbation theory methods in order to compare with

the time-dependent solution procedure.

Chapter 4 The new developed time-dependent source capability in the neutron transport
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code TORT-TD and a new method for providing the energy-angle dependent neutron

source is presented. In addition, an improvement for the spectral dependent delayed

neutron production is proposed.

Chapter 5 In this chapter the new capability of TORT-TD is applied to the YALINA-

Thermal experiment for validation purposes. It is shown that the kinetic parameters

can be calculated more accurately with help of the new flux solution than with the

common static flux approach.

Chapter 6 The last chapter summarizes the accomplished tasks. Moreover, it outlines

the achievements and points to potential future applications and improvements.
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Chapter 2

Theory of Neutron Transport in

Pulsed Neutron Source Experiments
In this chapter the relevant reactor theory and the numerical treatment is described in

order to underline the appropriateness and shortcomings of the common approaches to

interpret the results of Pulsed Neutron Source (PNS) experiments. In the first section 2.1

the fundamental time-dependent transport equation is described which governs in general

the neutron physics of nuclear reactors. Subsections explain the important adaptions of

the general transport equations to special cases (energy discretization, time-independent

effective multiplication, time eigenvalue problem). These special cases are recalled in the

description of the PNS experiment and the determination of the subcriticality. A detailed

discussion on the methods, their validity and applicability follows in section 2.2. Finally, in

section 2.3 the base of the new approach applied in this thesis is given with an alternative

method to solve the time-dependent transport equation including an external neutron

source.

2.1 The Time-Dependent Transport Equation

The evolution of neutrons in a multiplying medium with external neutron source is described

by the time-dependent transport equation (2.1) with an additional volume source term [1,19].

Note that all variables and indices are defined in the chapter Nomenclature (page xvii).

1

v

∂

∂t
ψ(r,Ω, E, t)

︸ ︷︷ ︸
Rate of change

+ Ω · ∇ψ(r,Ω, E, t)
︸ ︷︷ ︸

Streaming

+ Σt(r, E)ψ(r,Ω, E, t)
︸ ︷︷ ︸

Total collision

=

∫
dE′

∫
dΩ′Σs(r, E

′ → E,Ω′ → Ω)ψ(r,Ω′, E′, t)
︸ ︷︷ ︸

Scattering including Σe , Σi , Σn,2n , ... , Σn,xn

+ χp(r, E)

∫
dE′ νp(r, E′) Σf(r, E

′)φ(r, E′, t)
︸ ︷︷ ︸

Prompt fission neutrons

+
∑

j

χj(r, E)λj Cj(r, t)

︸ ︷︷ ︸
Delayed fission neutrons

+Q(r,Ω, E, t)

︸ ︷︷ ︸
External source

(2.1)

This integro-differential equation is solved for the dependent variable angular neutron
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2.1. The Time-Dependent Transport Equation

flux ψ denoting the expected rate of neutrons crossing a unit area in direction of the solid

angle Ω with energy E per unit time at position r and at time t. Since neutron-neutron

collisions are neglected, it is linear and depends in the most complex case on seven variables

(r(x, y, z),Ω(θ, ϕ), E, t), which result from the three dimensions of space, the polar and

azimuthal angle of the solid angle, the energy and the time [20].

The interpretation of equation (2.1) denotes the right-hand side as the rate at which

neutrons enter the actual phase space (r,Ω, E). The possible origin of those neutrons are

the fission reactions integrated over E′ and emitting isotropically neutrons with an energy

distribution χp(r, E). Another source are neutrons that are scattered at incident energies

E′ and solid angles Ω′ to the actual energy E and solid angle Ω. The differential scattering

cross section Σs includes the elastic and inelastic scattering and also the (n, xn) reactions

with multiplicity x ≥ 2. If the nuclear system is driven by an external neutron source these

neutrons are to be considered at their rate of injection Q.

The fission neutrons appear mainly prompt, i.e. instantaneously after the fission reaction.

A minor fraction of the neutrons, in case of 235
92U about 0.7%, are released by associated

precursors seconds to minutes after the fission event [21]. For these an additional set of

equations (2.2) is needed to account for the production of the precursor nuclides. The origin

of these delayed neutrons are in general attributed to β–-decay of highly excited fission

products and their decay products. Other mechanisms exist however in special nuclear

systems, where photoneutron reactions (γ,n) produce additional neutrons with deuterium

in heavy water or beryllium. Some neutron absorption reactions like 17O(n,p)17N lead in

consequence to emission of delayed neutrons by the decay of 17N [20]. Delayed neutrons

may also appear due to the α-decay of uranium or MA isotopes and the (α,n) reaction with

oxygen of the oxide fuel e.g. UO2, where the delay is caused by the decay constant of the

isotopes.

The precursor nuclides are grouped into few decay time groups or families and as much

precursor equations exist as time groups are to be considered. The emitted delayed neutrons

appear as an additional source term at the rate of the precursor decay with an energy

distribution χj(r, E) which is slightly softer than that of prompt fission neutrons.

∂

∂t
Cj(r, t) =

∫
dE′ νj(r, E′) Σf(r, E

′)φ(r, E′, t)− λj Cj(r, t) (2.2)

The production of neutrons competes against the removal from the phase space on the

left-hand side of eq. (2.1). This may happen by any reaction, e.g. absorption or scattering,

and is expressed by the total rate of collisions. Neutrons may also leave or enter the control

volume as consequence of the random walk through the medium. This is commonly called

the streaming term of the transport equation. The streaming of neutrons is directly linked

to the leakage of neutrons from the reactor, when streaming on the reactor boundaries is

looked at.
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Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

When production and losses do not balance each other, the neutron population will

change in time. Thus, the difference of these per unit time defines the rate at which the

neutron angular density N(r,Ω, E, t) = 1
vψ(r,Ω, E, t) changes.

To complete the set of equations, the initial condition of the time-dependent transport

equation is defined in eq. (2.3) and the boundary condition is given in terms of the

nonreentrant surface B of the reactor volume in eq. (2.4) [20].

ψ(r,Ω, E, 0) = ψ0(r,Ω, E) (2.3)

ψ(rB,Ω, E, t) = 0 if Ω · nB < 0 , rB ∈ B (2.4)

2.1.1 Energy Discretization

The neutron energies encountered in reactor calculations usually range from 0.001 eV to

about 20MeV. If a spallation neutron source would be used in ADS it could even range

to some hundreds of MeV [22]. This huge span of about ten orders of magnitude has

been traditionally discretized for the use in deterministic transport methods. While the

increasing computing power allows nowadays the use of continuous energy Monte Carlo

(MC) codes for many types of calculations, have deterministic multigroup methods retained

their predominant role in full core and time-dependent reactor calculations.

When defining the energy group it is customary to address the group of highest energy

as the first group. This leads to the fact that Eg−1 > Eg . The definition of the involved

multigroup variables is the following [20]:

φg =

Eg−1∫

Eg

dE φ(E) group flux (2.5)

Σxg =
1

φg

Eg−1∫

Eg

dE Σx(E)φ(E) cross section of type x (2.6)

Σsg′g =
1

φg′

Eg−1∫

Eg

dE

Eg′−1∫

Eg′

dE′Σs(E
′ → E)φ(E′) group transfer cross section (2.7)

χg =

Eg−1∫

Eg

dE χ(E) fission spectrum (2.8)

1

vg
=

1

φg

Eg−1∫

Eg

dE
1

v(E)
φ(E) neutron group velocity (2.9)
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2.1. The Time-Dependent Transport Equation

Various methods exist to provide suitable weighting spectra φ(E) for the generation of

group constants, which can be recalled to a great extent in the nuclear data processing

code NJOY [23]. In the further reading the multigroup formalism will be used extensively.

2.1.2 The keff Eigenvalue Problem

The complete form of the transport equation is usually adapted to more simple forms,

which are easier to solve and still adequate to cover the physical processes. If we consider a

time-invariant system like an operating nuclear power reactor at nominal conditions, then

the losses balance exactly the production. In other words the time derivative of eq. (2.1) is

zero. Since the neutron chain reaction is self-sustaining, the external neutron source term

of that equation vanishes, too.

In computer codes the balance cannot be met exactly. Therefore, a parameter called the

effective multiplication factor keff is introduced into the static transport equation (2.10)

that manipulates the total number of emitted fission neutrons (yield) νt(E)
keff

in order to get

the numerical equilibrium.

Ω · ∇ψg(r,Ω) + Σtg(r)ψg(r,Ω)

=
∑

g′

∫
dΩ′Σsg′g(r,Ω

′ → Ω)ψg′(r,Ω
′)

+
χg(r)

keff

∑

g′
νtg′(r) Σfg′(r)φg′(r) (2.10)

This equation indicates a constant rate of the delayed neutron emission, or better a

saturated precursor concentration, which allows to use the total fission yield as the sum of

prompt and delayed neutrons in eq. (2.11) and the fission spectrum averaged for prompt

and delayed neutrons with the physical fraction βj =
νj
νt

in eq. (2.12).

νtg = νpg +
∑

j

νjg (2.11)

χg = (1− β)χpg +
∑

j

βj χjg (2.12)

The nonreentrant boundary condition is applied to eq. (2.10) in the multigroup form of

eq. (2.13).

ψg(rB,Ω) = 0 if Ω · nB < 0 rB ∈ B (2.13)
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Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

From this equations it is evident that keff = 1 means the exact balance of production and

loss in the critical reactor. For keff greater than unity the production exceeds the loss term

and the reactor is said to be supercritical. If keff is smaller than unity the loss prevails the

production term and the neutron yield is artificially enlarged. Equations without external

source are also called "homogeneous" throughout this work.

It is obvious that this equation is only physically meaningful if keff is near unity. Then,

the flux distribution is that of the critical reactor. The more the effective multiplication

factor deviates from unity the more a real reactor would change its neutron distribution with

time. Since all terms of the transport equation would change considerably [24], the resulting

neutron distribution would be artificial. On the other hand, the effective multiplication

factor is a measure how far away the reactor is from the critical state. For this reason, it is

of great importance for ADS.

Mathematically, keff corresponds to the dominant eigenvalue of eq. (2.10) and this means

the solution space includes also any linear dependent solution. In other words, the neutron

flux can be normalized to any value and from an engineering objective a neutron flux could

be chosen that corresponds to the thermal power of the reactor. In case of the solution

of the inhomogeneous equation (2.1) of a subcritical system there exists only one unique

neutron flux distribution imposed by the external neutron source [25,26]. A defined thermal

power can be met only with adaption of the source strength.

2.1.3 The α Eigenvalue Problem

If the multiplication factor keff is smaller than unity the homogeneous form of the transport

equation (2.1) will only have the zero flux solution because the loss rate preponderates the

production rate. If a subcritical reactor was driven by an external neutron source, which

stops operation at time t0, the time-asymptotic zero flux solution will be finally obtained,

but the reactor system will show a decay in the neutron population till the final state is

reached. One of the suitable equations describing the transition of the homogeneous reactor

system to the final state is the α or time eigenvalue equation (2.14).

Ω · ∇ψg(r,Ω) +
(

Σtg(r) +
α

vg

)
ψg(r,Ω)

=
∑

g′

∫
dΩ′Σsg′g(r,Ω

′ → Ω)ψg′(r,Ω
′)

+ χg(r)
∑

g′
νtg′(r) Σfg′(r)φg′(r) (2.14)
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2.1. The Time-Dependent Transport Equation

This equation is derived by using an eigenvalue expansion with flux solutions of the form

ψg(r,Ω, t) = Aψg(r,Ω) eα t (2.15)

inserted into the source-free multigroup version of eq. (2.1). Equation (2.14) is solved

for the k-th eigenvalue (or mode) αk and corresponding eigenfunction ψkg. The general

analysis of the spectrum of the time eigenvalue defines α as a complex number, however in

the way it is used in reactor physics investigations, only the real part is of interest [1]. In

the following the notation α will refer to the real part of the time eigenvalue.

The time-dependent neutron (angular) flux is constructed as sum of the product of

the modal flux, the αk exponential term and a normalization constant Ak. This however

implies, that the α eigenvalues are discrete and no continuous spectrum exists [1].

ψg(r,Ω, t) =
∞∑

k=0

Ak(t)ψkg(r,Ω) eαk t (2.16)

The dominant or fundamental time eigenvalue α0 is understood as the mode, which

governs the decay of the reactor to the final state, when all higher modes have gone due

to the shorter presence indicated by the vanishing time exponential with αk t > αk+1 t >

. . . > αK t.

The initial condition for this time-dependent equation is written in eq. (2.17) analogously

to eq. (2.3) and the nonreentrant boundary condition is again applied in eq. (2.18).

ψg(r,Ω, 0) = ψ0g(r,Ω) (2.17)

ψg(rB,Ω, t) = 0 if Ω · nB < 0 , rB ∈ B (2.18)

In the same manner that sub-, super- and criticality were defined for values of the

multiplication factor keff , it can be associated to values of α0. Then, α0 = 0 will describe

the exact balance between the loss and production rate and therefore yield the identical

flux solution as is obtained for keff = 1 in eq. (2.10). The subcritical reactor will have

α0 < 0 and so will the impact of the prompt modes or harmonics stay as long as the eαk t

exponential term has not decayed. When the fundamental decay mode has established,

then eq. (2.16) shows that the spectral properties do not change anymore with time. Only

the normalization constant and the exponential term change and these can be interpreted

as the amplitude function, which decays according to the subcriticality of the system.

This is immediately the connection to the justification of the point kinetic equations of

section 2.1.5.

In equation (2.14) no distinction between prompt and delayed neutrons is made. When

delayed neutrons are to be considered in PNS experiments they appear as delayed neutron

modes or harmonics. Due to the completely different time scales of prompt and delayed
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Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

neutrons, usually only the prompt modes are considered [1].

In case of the isotropic diffusion equation as low order angular approximation to the trans-

port equation there may be as much modes as the remaining phase space variables (r, Eg)

can deliver. The maximum is the product of the number of energy groups and the number

of mesh points [27]. If we extend this to the transport equation, the number of potential

modes increases to account for the anisotropy of the problem imposed by the approximation

for the solid angle and the anisotropic scattering. The complexity of the solution of the time

eigenvalue equation is attended by the complexity which is acting by the considered phase

space (r,Ω, Eg) on the transport equation. In real applications it is almost impossible to

verify, that the eigenvalue spectrum is composed of discrete ones only.

When α0 is significantly different from zero the flux solution must be different compared

to the flux solution of the keff eigenvalue problem. In case of a subcritical time eigenvalue

problem the α
vg

term is negative and reduces the total cross section. This effectively will

shift the flux spectrum to softer energies [1]. Obviously, the neutronic properties of a time-

dependent subcritical reactor are considerably different from a "pseudo" critical reactor in

a keff problem. The spectrum softening will have a complex influence on certain parts of

the transport equation, e.g. prompt fission neutron source and leakage, and may concern

the kinetic properties as well [24].

2.1.4 The Adjoint Equation

It has been very early observed that the solution of an equation adjoint to one of the

equations (2.1),(2.10) or (2.14) called adjoint flux can be advantageously used as a weighting

function in perturbation theory [28], sensitivity and uncertainty analysis [29]. The adjoint

flux is introduced here for the later use in the calculation of kinetic parameters (see section

2.1.5). Equation (2.19) is the equation adjoint to the keff equation (2.10), where the dagger

of ψ† denotes the adjoint flux.

−Ω · ∇ψ†g(r,Ω) + Σtg(r)ψ†g(r,Ω)

=
∑

g′

∫
dΩ′Σsgg′(r,Ω→ Ω′)ψ†g′(r,Ω

′)

+
1

k†eff

∑

g′
χg′(r)νtg(r) Σfg(r)φ†g′(r) (2.19)

ψ†g(rB,Ω) = 0 if Ω · nB > 0 , rB ∈ B (2.20)

Apart from the special noting of the adjoint flux, the inconspicuous changes in the

sign of the streaming term and in the scattering and fission term have to be emphasized.

11



2.1. The Time-Dependent Transport Equation

The fission and differential scattering is now from energy group g to g′ and the latter

from direction Ω to Ω′. This and the opposite sign of the streaming term point to the

nomenclature of the adjoint equation as the "backward" transport equation. The flight

path of the neutron is followed from the ending to the starting point [1].

In order to emphasize some of the relevant properties of this fundamentally important

adjoint function it is advantageous to introduce the time-independent transport operator in

eq. (2.21) and its adjoint equivalent eq. (2.22).

Lψg(r,Ω) = −Ω · ∇ψg(r,Ω)− Σtg(r)ψg(r,Ω)

+
∑

g′

∫
dΩ′Σsg′g(r,Ω

′ → Ω)ψg′(r,Ω
′) (2.21)

L† ψ†g(r,Ω) = Ω · ∇ψ†g(r,Ω)− Σtg(r)ψ†g(r,Ω)

+
∑

g′

∫
dΩ′Σsgg′(r,Ω→ Ω′)ψ†g′(r,Ω

′) (2.22)

Moreover, the production operator of a multiplying medium may be defined according

to equation eq. (2.23) and its adjoint according to eq. (2.24).

F ψg′(r,Ω
′) =

∑

g′
χg(r) νtg′(r) Σfg′(r)ψg′(r,Ω

′) (2.23)

F † ψ†g′(r,Ω
′) =

∑

g′
χg′(r) νtg(r) Σfg(r)ψ†g′(r,Ω

′) (2.24)

Since the operators L, F and their adjoints L†, F † are generally different in their

formulation, they are principally not self-adjoint and by this the neutron flux ψ and the

adjoint flux ψ† are not equal. The only exception occurs when looking at the monoenergetic

diffusion equation for which the scalar flux φ and its adjoint φ† are equal.

The source-free transport equation can now be written in operator notation in the real

form in eq. (2.29) and the subscript "hom" of the angular flux emphasizes the solution of

the homogeneous system.

[
L− ηF

]

︸ ︷︷ ︸
M

ψhom = 0 (2.25)

and in the adjoint form in eq. (2.26). In order to avoid the connotation of the effective

12



Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

multiplication factor equation the 1
k expression is replaced by η.

[
L† − η†F †

]

︸ ︷︷ ︸
M†

ψ†hom = 0 (2.26)

To illustrate some very important properties of the reformulated equations (2.25) and

(2.26) we define the basic requirement of the total adjoint operator M † in equation (2.27),

namely the inner product of the adjoint flux and the total operator applied to the real flux

must be equal to the inner product of the real flux and the total adjoint operator applied

to the adjoint flux.

〈
ψ†,M ψ

〉
=
〈
ψ,M † ψ†

〉
(2.27)

Inserting eq. (2.25) and eq. (2.26) into eq. (2.27) leads to the fundamental equation

(2.28).

(
η − η†

)〈
ψ†hom,F ψhom

〉
= 0 (2.28)

In reactor physics applications the inner product of the flux and its adjoint is generally

non-zero. In turn the eigenvalues to the real and adjoint eigenfunctions must be equal [1].

Thus, a homogeneous equation with η 6= 0 has associated an adjoint equation. In the

manifold of solutions the forward dominant eigenvalue and eigenfunction are identical to

the inverse of the effective multiplication factor keff and the angular flux ψ, respectively.

For further discussion the inhomogeneous time-independent transport equation in op-

erator notation is given in eq. (2.29) and the angular flux solution is indicated with the

subscript "inh". The variable η is kept in this equation and its meaning will be explained

in this context.

[
L− ηF

]
ψinh = Q (2.29)

Stumbur [24] and in more recent context Cacuci [25] have pointed out that the inhomoge-

neous transport equation (2.29) and the homogeneous transport equation (2.25) correspond

to the first and second alternative of the Fredholm Alternative Theorem (also called Riesz-

Schauder Theorem) [26], respectively. In particular it is stated in the first alternative that,

if the homogeneous equation has only the time-asymptotic zero solution as it occurs in a

subcritical state, the corresponding inhomogeneous equation with external source has a

unique solution. Equation (2.30) denotes the formal solution to the inhomogeneous equation

(2.29), but now η is part of the resolvent [24,25] constituting mathematically the unique

13



2.1. The Time-Dependent Transport Equation

solution to the inhomogeneous transport equation.

ψinh =
[
L− ηF

]−1
Q (2.30)

Thus, for the inhomogeneous equation the requirement of equations (2.27) and (2.28)

cannot be fulfilled and a mathematical connection between the homogeneous adjoint

equation and the inhomogeneous equation (2.29) cannot be established.

The second alternative refers to the homogeneous equation (2.29), for which an adjoint

equation exists, if the solution is nonzero and the eigenvalues are identical according to

equation (2.28). Under the condition that
〈
ψ†inh, Q

〉
= 0 for the solution ψ†inh of the

homogeneous adjoint equation there exists a non-unique solution to the inhomogeneous

equation (2.29). However, this condition is unlikely to be fulfilled, since there is no

orthogonality relation between the external source and the homogeneous adjoint flux, and

only the trivial Q = 0 satisfies the condition.

On the other hand, the inhomogeneous adjoint equation in the form of eq. (2.31) can be

found in various textbooks e.g. of Bell [1] or Duderstadt [20].

[
L† − η†F †

]

︸ ︷︷ ︸
M†

ψ†inh = Q† (2.31)

In this case the adjoint source Q† is interpreted as an arbitrary detector cross section Σd

and the importance ψ†inh is understood as the expected detector counts because of neutrons

at a certain point in phase space or secondary neutrons produced by these neutrons due to

scattering or fission. With this example the meaning of the nomenclature "forward" and

"backward" equation can be understood. In the inhomogeneous "forward" equation (2.29)

the flux denotes the asymptotic distribution of neutrons, which are all secondaries of the

initial external source neutrons. The external source can thus be seen as the starting point.

In the "backward" equation the adjoint source Q† = Σd is the target of interest and the

detector response
〈

Σd, ψ
†
inh

〉
due to neutrons at a certain position and energy is equal to

the adjoint flux. It is the importance based on the knowledge of the neutron history, thus

looking back from the ending to the starting point.

This short summary of the application of the adjoint function to the homogeneous and

inhomogeneous transport equation shows that the validity of methods developed for critical,

source-free reactors in the frame of subcritical reactors driven by an external neutron source

must be carefully checked as far as adjoint function based methods like perturbation theory

are concerned.

14



Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

2.1.5 The Point Kinetic Equations

When the time-dependent transport equation (2.1) and the continuous energy version

of the adjoint equation (2.10) are multiplied by the adjoint flux ψ† and the real flux

ψ, respectively, and both modified equations then are subtracted from each other and

integrated over the phase space, the amplitude function of the point kinetic equations (2.32)

can be derived [1,30,31]. The amplitude P means the adjoint weighted number of neutrons

in the reactor volume eq. (2.34). A similar procedure with a factor χj ψ† can be applied

to the precursor equations (2.2), which yields the integral weighted precursor equations of

eq. (2.33).

dP (t)

dt
=
ρ(t)− βeff(t)

Λ(t)
P (t) +

∑

j

λjCj(t) +Q(t) (2.32)

dCj(t)

dt
=
βeffj(t)

Λ(t)
P (t)− λjCj(t) j = 1, . . . , {6, 8} (2.33)

P (t) =

∫∫∫
dV dE dΩ

1

v(E)
ψ(r,Ω, E, t)ψ†(r,Ω, E) (2.34)

The introduced kinetic parameters are defined in equations (2.35) to (2.41).

ρ(t) =
1

F

{∫
· · ·
∫

dV dE dE′ dΩ dΩ′ ψ(r,Ω, E′, t)ψ†(r,Ω, E)

×∆
[
Σs(r, E

′ → E,Ω′ → Ω, t) + χ(r, E) νt(r, E
′, t) Σf(r, E

′, t)
]

−
∫∫∫

dV dE dΩ ∆Σt(r, E, t)ψ(r,Ω, E, t)ψ†(r,Ω, E)
}

(2.35)

βeff(t) =
∑

j

βeffj(t) (2.36)

βeffj(t) =
1

F

∫
· · ·
∫

dV dE dE′ dΩ dΩ′ χj(E) νj(r, E
′) Σf(r, E

′)

× ψ(r,Ω′, E′, t)ψ†(r,Ω, E)

(2.37)

Λ(t) =
1

F

∫∫∫
dV dE dΩ

1

v
ψ(r,Ω, E, t)ψ†(r,Ω, E) (2.38)

Cj(t) =
1

ΛF

∫∫∫
dV dE dΩχj(E)Cj(r, t)ψ

†(r,Ω, E) (2.39)

Q(t) =
1

ΛF

∫∫∫
dV dΩ dEQ(r,Ω, E, t)ψ†(r,Ω, E) (2.40)
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2.1. The Time-Dependent Transport Equation

F (t) =

∫
· · ·
∫

dV dE dE′ dΩ dΩ′χ(E) ν(r, E′) Σf(r, E
′)

× ψ(r,Ω′, E′, t)ψ†(r,Ω, E)

(2.41)

To this point no approximation is introduced and the solution of equations (2.32 - 2.33)

is equivalent to the solution of equations (2.1) and (2.2) [32]. The approximate character

of the point kinetic equations follows from the fact that the kinetic parameter equations

(2.35 - 2.41) are usually taken time-independent, i.e. with ψ(r,Ω, E, t) = ψ0(r,Ω, E)

being the scalar fundamental mode flux of the homogeneous transport equation (2.10).

This fundamental mode state is used as the reference state and changes in the reactor

configuration are considered in the parameter ρ of equation (2.35) as integral over the

differences between the actual time-dependent and reference state. The introduction of

time-independent kinetic parameters corresponds to the assumption that the neutron flux

shape does not vary during the time-dependent simulation.

It also defines the initial condition of the amplitude P in eq. (2.42). To find the

initial condition on the effective precursor concentrations C0j(t = 0) one may assume the

equilibrium precursor concentrations with the consequence of ∂
∂tCj(r, t) = 0 in eq. (2.2).

P0 =

∫∫∫
dV dE dΩ

1

v(E)
ψ0(r,Ω, E)ψ†(r,Ω, E) (2.42)

The choice of the weighting function is already indicated in the nomenclature of the

adjoint flux introduced in section 2.1.4. In principle every suitable function is allowed for

the phase space integration. Several authors have pointed out that the adjoint flux is an

exceptionally well suited weighting function, since it keeps the validity to the first order, if

small perturbations e.g. control rod movement or coolant density changes are acting on

the neutron flux distribution [32]. Another reason for choosing the adjoint function is that

analyses with variational methods show that the error in the integration of two "inaccurate"

functions, like in the approximation of the time-dependent real and adjoint flux by the

static, fundamental mode real and adjoint flux, can be minimized by involving the adjoint

of the problem [1].

The normalization integral F in eq. (2.41) is chosen in a way that the parameters can be

interpreted in a physical manner. The effective delayed neutron fraction βeff accounts for

the softer delayed neutron energy spectrum χj , which is given a specific importance by the

adjoint function. In thermal reactor systems an enlargement up to 20% may occasionally

be observed in comparison to the physical delayed neutron fraction [1]. Another important

parameter is the mean neutron generation time Λ, which is understood as the average

live-time of a neutron from its birth to its absorption leading to another fission event [20].

In zero-power reactors where no temperature feedback or other influences like control
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rod movement are expected, the point kinetic equations are linear [1].

The neutron flux calculations typically are based on the real and adjoint effective

multiplication factor equations of eq. (2.10) and therefore are only valid for small deviations

of keff from unity. The use of the critical flux may be questionable, when the real flux

deviates considerably as it occurs e.g. in subcritical reactors either driven by a neutron

source or transitioning to the time-asymptotic state by decay of the neutron population [24].

The first term on the right hand side of eq. (2.32) is called prompt decay constant [20] (see

eq. (2.43)). This constant matches the fundamental time eigenvalue only, if the prerequisites

of the point kinetic equations are fulfilled, i.e. the flux of the reference state is a good

approximation to the transient flux. If the reactor is considerably subcritical the involved

parameters can change due to the dependence on the real time-dependent flux in the original

equations (2.35) to (2.41).

α0 =
ρ− βeff

Λ
(2.43)

If the condition is fulfilled, then ρ is connected to the static effective multiplication

factor problem as shown in eq. (2.44) and characterizes the static reactivity.

ρ =
keff − 1

keff
(2.44)

2.2 Pulsed Neutron Source Experiments

PNS experiments have been used in the very beginning of experimental reactor physics to

investigate the kinetic properties of nuclear systems [33]. Main investigation areas were

devoted to neutron lifetime measurements, neutron thermalization and neutron spectra

in time-of-flight measurements. The main idea of PNS experiments is to deliver source

neutrons to a subcritical or near critical reactor within a very short time interval and to

measure the local response as a function of time.

Many details have to be considered for the planning of such experiments and their impact

on the quantity of interest must be reflected.

Neutron source Several kinds of external neutron sources exist: spallation, fusion, spon-

taneous fission and also (α,n) neutron sources. The most intense neutron source is

achieved with accelerated protons impinging on a target e.g. lead in a spallation

reaction. It is observed that the number of neutrons released per proton and per

proton energy can be enhanced with increasing proton energy, but stagnates at 1GeV.

For this optimized proton energy one spallation reaction would release about 20 to

30 neutrons and the total neutron source intensity can only be further increased by

increasing the accelerator current [34], which makes these devices very expensive
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and technically challenging. The neutron source intensity can range between 1012

to 1014 neutrons per second. This neutron source emits neutrons with very high

energies, which can be spread up to the GeV range. Potential accelerator types are

the Cyclotron for beam currents up to about 10mA and the Linac for higher currents.

In small experimental facilities monoenergetic fusion neutron sources are applied [35],

which obey either the relationship

3
1H + 2

1H −−→
4
2He + 1

0n (2.45)

called (d,t) neutron source and an average neutron energy of 14.1MeV or

2
1H + 2

1H −−→
3
2He + 1

0n (2.46)

called (d,d) neutron source and an average neutron energy of 2.5MeV. Again de-

pending on the accelerator current such fusion neutron sources can emit 108 to 1011

neutrons per second.

Another common neutron source is the 252
98Cf source. With a branching ratio of 3.1%

this isotope disintegrates by spontaneous fission releasing about 3.756 neutrons per

event [36,37]. The number of emitted neutrons is proportional to the total mass of

the isotope and can be quantified to 2.314 s−1 µg−1. The neutron energy distribution

obeys a typical fission energy spectrum with a maximum probability at 0.7MeV and

an average energy of 2.1MeV [38].

As a last example the combination of an α-particle emitting material such as radium,

polonium or americium and a material with large (α,n) cross section like beryllium is

used as a neutron source.

9
4Be + 4

2α −−→
12
6C + 1

0n (2.47)

Source intensities of about 107 neutrons per second have been used [39]. The average

neutron energy depends on the energy of the α-particle, but is around 4MeV [40].

Reactor properties For measuring material properties in PNS experiments typically

compact nuclear reactors without reflector are used. In view of experiments for

transmutation reactors reflected reactor systems are used. The reflector adds gen-

erally a portion of complexity to the kinetic description, because neutron lifetimes

or moderating properties may be quite different from those of reactor cores. For

transmutation purposes fast spectrum cores are preferred. However, in recent hybrid

designs thermal neutron energy spectrum regions for isotope production are fore-
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seen [41]. In some of the ADS projects like the YALINA [42] or the planned and

finally discontinued TRADE [43] experiments, thermal spectrum reactors coupled

with an external neutron source were considered. In the latter the time-dependent

behavior including thermal feedback effects should have been addressed. These design

items are accompanied by fundamental physical differences in the reactor properties

such as the larger diffusion length and reduced reaction probabilities in fast reactors,

which must be compensated by higher enrichment of the fissile isotopes. In terms of

the kinetic behavior the time constants (mean neutron generation time ) deviate by

several order of magnitude 10−7 s to 5 · 10−6 s in fast and 10−5 s to 10−4 s in thermal

systems [20]. With the choice for fuel containing plutonium and other MAs the

second important kinetic parameter (effective delayed neutron fraction) deteriorates

in comparison to pure UO2 fuel.

Detector The response of the reactor system during the experiment is measured in

detectors. From several detector responses at distributed positions the wanted

quantity has to be extracted. Since neutrons cannot be measured directly, secondary

reaction products are counted. Common neutron detectors are fission detectors, which

contain small amounts of 235
92U for thermal and fast neutrons or 238

92U for fast neutrons

only. Each fission event will emit characteristic γ-rays recorded in a measurement

device. Another measuring method is the (n,p) reaction of 3
2He. The emitted proton

can easily be detected. Since this cross section exhibits a 1
v -shape over a large energy

range, it predominantly will absorb thermal neutrons.

3
2He + 1

0n −−→
3
1H + 1

1p (2.48)

2.2.1 Phenomenology

In fig. 2.1 a simulated reaction rate of a PNS experiment with a (d,d) neutron source in a

YALINA-Thermal like subcritical reactor is shown. It results from an injection of neutrons

during a pulse width of 5 µs in the very middle of a subcritical thermal reactor. At several

positions the 3
2He(n,p) reaction rate is measured. For the moment it is sufficient to mention

that all detectors are axially at the height of the neutron source and the Experimental

Channels (ECs) numbering is such that in increasing order the radial distance from the

source increases as well. ECs 1-3 are located in the core, EC5 and EC6 in the reflector.

The pulse frequency is 50Hz which corresponds to a pulse period of 20ms. Before relevant

measurements are performed the PNS operates for several minutes in order to allow for the

build-up of the delayed neutron precursor concentration specific to the pulse frequency.

The pulse period roughly is subdivided into four time intervals for which the physical

phenomena will be explained in more detail. When we start with interval T1 the neutron
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distribution at 20ms may be thought of to be the initial condition at t = 0. During the

first 5 µs of this first time interval the source emits neutrons in the center of the reactor.

Generally, the arrival of the neutrons at certain radial and axial positions will take a specific

time which is correlated to the velocity of the neutrons and their slowing-down because of

collisions. It is however likely that many neutrons counted at EC1 can reach the detector

without many collisions and therefore the counting rate raises immediately. From the inner

to the outer radial positions in the reactor a significant amount of time can be deduced for

the neutron propagation into the reflector. The maximum rate is counted in the outermost

detector EC6 latest about 1ms after the neutron pulse.

Figure 2.1: Classification of time intervals in the PNS experiment

For the duration of the pulse width the neutron distribution tries to develop to the

asymptotic distribution of the inhomogeneous transport equation (2.1), where the neutron

flux and power are peaked at the center of the neutron source and diminish with a convexly

shaped distribution towards the outer bounds of the reactor [44]. However, this state

cannot be reached in due time, so that the neutron field/system is highly excited and will

redistribute the neutrons according to the source-free time eigenvalue transport equation

(2.10) with the excited state as initial condition. The description of section 2.1.3 relates

the redistribution and position dependent decaying behavior to the existence of the "higher

modes" of the time eigenvalue problem. Additionally to the spatial diffusion of the source

and fission neutrons, which cause the "harmonic distortion", the "kinetic distortion" has

been identified [45,46]. It is encountered in reactors with heterogeneous material distribution,

where the materials have significantly different diffusion length and moderating ratios. The

larger the diffusion length the longer the neutrons stay in that region. In view of the time

scales of the PNS experiment it may happen that neutrons of the same fission chain stay in
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the fuel region or diffuse into the reflector undergoing a slowing-down process of another

velocity and diffuse later back to the fuel region. The latter neutrons will be distributed

differently in energy than their sisters.

After a considerable amount of time - 3ms in fig. 2.1 - the short-lived modes with the

severest kinetic impact have decayed away. The count rate decays with a similar slope at

all detector positions of the reactor. This phase is attributed to the second time interval

T2 and is interpreted as the tendency of the reactor to find the fundamental decay mode as

the stable decay path. In other words, with only one dominant decaying exponential of

eq. (2.16) the curve of the count rate would develop to a straight line in a semi-logarithmic

plot. It is obvious that from this part of the measurement nearest to the fundamental decay

mode an important amount of the kinetic characteristic of the system can be derived. The

slope method relying on this will be described in section 2.2.3.

The remaining phases of fig. 2.1 are directly related to the existence of the delayed

neutrons. Time interval T3 denotes thereby the transition from the prompt decay phase

to the "quasi" constant delayed neutron background in T4. It is once more emphasized

that the transition is position dependent. In common notation this effect is attributed to

the "delayed harmonics" [1], which appear in the time frames of the delayed neutron time

group decay constants. Because the delayed neutron source term is entirely located in the

fuel, the transition effect is much stronger in the reflector due to the necessary diffusion of

the delayed neutrons and by those generated prompt neutrons from the fuel region into the

reflector.

2.2.2 The Area Method

The Sjöstrand or area (ratio) method relates the area caused by prompt neutrons to the

area attributed to the constant delayed neutron background [47].

The simple relationship between the reactivity in unit Dollar and the areas derives

from the integration of the point kinetic equations (2.49) and (2.50) without feedback and

without changes in the reactor configuration as described by Bell [1]. The short pulse width

of the external neutron source allows the use of a Dirac delta function δ(t).

dP (t)

dt
=
ρ− βeff

Λ
P (t) +

∑

j

λjCj(t) +Qδ(t) (2.49)

dCj(t)

dt
=
βeff,j

Λ
P (t)− λjCj(t) j = 1, . . . , {6, 8} (2.50)

To yield the pure prompt area indicated in fig. 2.2, eq. (2.49) is integrated without
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Figure 2.2: Schematic detector response to a pulse (copy from Bell [1])

considering the delayed neutron term over the pulse period T obtaining eq. (2.51).

Ap ≡
T∫

0

Pp(t) dt = − QΛ

ρ− βeff
(2.51)

When integrating equations (2.49) and (2.50) over the pulse period for the total area

eq. (2.52) in fig. 2.2 from which the delayed neutron area may be deduced by subtracting

the prompt area of eq. (2.51) it yields the final equation (2.53).

At ≡
T∫

0

P (t) dt = −QΛ

ρ
(2.52)

− ρ

βeff
=

Ap
At −Ap

=
Ap
Ad

(2.53)

To determine the reactivity in Dollar of a reactor after a PNS experiment one would

simply have to integrate the detector signal and measure the delayed neutron background.

If other background neutron sources exist, they need to be quantified and subtracted [48].

In order to achieve the static reactivity ρ, the effective delayed neutron fraction must be

known or calculated. This simple method is said to be the most promising one in PNS

reactivity determination methods [48,49]. The reason for this is that the integration over the

pulse period will smooth out strong deviations from the canonical average of the detector

count due to the relatively small time periods. This method therefore is called stable or
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insensitive, since the obtained reactivities do not spatially deviate so much as they do with

other methods [1]. However, this is at the same time a disadvantage of the area method,

because the fundamental decay mode required by the point kinetic assumption is not assured

to appear purely for the integration. This is qualitatively seen by comparing the ideally

straight line of fig. 2.2 in the prompt decay region and the analogous part T2 in fig. 2.1.

The latter more realistic curve for PNS experiments in thermal research reactors involves a

slight change in curvature at every detector position. If the area method was to be applied

blindly, then only T2
T1+T2+T3

' 30% of the measured curve would approximately be (the

slight change in curvature neglected) a valid range for the integration of the fundamental

prompt neutron decay mode.

To remove the influence of the higher prompt modes at the beginning of the measurements,

Gozani proposed the backward extrapolation of the "straight" fundamental decay mode line

to time zero as indicated with the dashed line in fig. 2.2 [50]. The backward extrapolation

of the curves slightly changing in fig. 2.1 emphasizes immediately the problem that a small

change in the slope of the tangent could generate a significant change in the extrapolated

prompt area. As underlined by Gozani the correction cannot account for the effect of

kinetic exchange of neutrons from the reflector into the core ("kinetic distortion").

2.2.3 The Slope Fit Method

The slope fit (or prompt decay fitting) method obeys the idea of measuring or finding the

fundamental mode prompt decay constant α0. The prompt decay constant corresponds to

the exponent in the delayed-neutron-free point kinetic equation (2.49). Conceptually, the

decay constant is also congruent to the time eigenvalue of the zeroth mode (see section 2.1.3),

which however is based on a more physical ground. If the decay constant α0 was measured

and the effective delayed neutron fraction βeff and the mean neutron generation time Λ

calculated, the static reactivity ρ could be calculated by using eq. (2.54) [51].

α0 =
ρ− βeff

Λ
(2.54)

Generally, the same restrictions hold for this method as mentioned for the area method

in section 2.2.2. But the application of this method shows a significant sensitivity on the

position of the detector. Moreover, it shows an unfavorable dependence on the fitting

method itself or the evaluator, who fits numerically the exponentials to the measured curve.

There is no stringent evidence that the numerical fit would achieve the physical decay

constant, if the pure fundamental mode decay was visible.
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2.3. Application of the Fully Implicit Time Integration Scheme

2.3 Application of the Fully Implicit Time Integration Scheme

Both methods, area and slope fit method, were designed for unreflected reactors [51]. Con-

sequently, methods have been studied to extract the fundamental mode from measurements

or generate correction factors based on higher modes calculations [27, 52, 53]. In recent

developments the attempt is made to solve the time eigenvalue equation for higher modes.

Cao has introduced this capability in a two-dimensional diffusion code and used it to

simulate a configuration of the MUSE-4 experiment. With help of the higher prompt modes

and eigenfunctions correction factors are calculated for the area method [54,55].

Lathouwers developed a Finite Element Even Parity transport code [56] with the

capability of calculating the time eigenvalues and eigenfunctions for large numbers of modes.

In an application to the current GUINEVERE reactor [57] it is shown that a very high

number of modes has to be accounted for in a two-dimensional calculation, in order to

describe the time-dependent behavior of the PNS experiment in a modal synthesis approach.

The numerical effort for a full three-dimensional calculation with a suitable energy group

representation seems to be very challenging. A disadvantage of this approach is the fact that

the time eigenvalue equation is a homogeneous equation with no account for the external

neutron source. To achieve a suitable guess of the initial condition with external source,

approximations have been proposed [55,57] which are a combination of the modal synthesis

approach and the external source.

The prompt decay of the PNS experiment can be simulated with MC codes. Several

works have been performed calculating the time-dependent detector responses with the

MCNP5 or the MCNPX code [48, 49, 58, 59]. These codes include the simulation of delayed

neutrons, but the build-up during the initial phase of the experiments to get the constant

background is not easy to calculate. Talamo [60] proposed the pulse superimposition

method, where the detector response is tallied for one pulse once for a very long time and

the delayed neutron tail is afterward constructed by repeatedly superposing the detector

response shifted in time in accordance with the pulse width. This method is generally valid

for the zero-power reactor without feedback. The drawback of the use of MC codes on top

of the computing challenge is that to get a local response as a function of the pulse width

the variance reduction techniques have to be massively used in general. Thus, instead of

the full phase space neutron flux solution of the pulse a local quantity is achieved only.

This makes it almost impossible to look for observed physical effects, when they are not

known before.

The summarized reactor theory in view of the PNS experiment and the described

reactivity determination methods lead to the observation that a simulation tool, which can

overcome the mentioned drawbacks and can combine most of their advantages is not yet

available. Here is pointed out in short form, what is expected from a suitable simulation
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Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

tool:

• Solution of the time-dependent transport equation

• Time-, energy-, solid-angle-dependent external neutron source

• No dependence on adjoint weighted parameters

• Evaluation of local quantities (detector response, . . . )

• Calculation of integral parameters (keff , ksrc, . . . )

• Full solution in phase space in acceptable time

The fully implicit time discretization scheme inserted in a suitable transport code is

a promising candidate for the investigation of the PNS experiments. First applications

have appeared in the development of the TIMEX [61] and TRANZIT [62] codes in the early

seventies. Because of the huge computational effort, these programs could only be used for

small and prompt supercritical problems without delayed neutrons. Recent developments

of the discrete ordinates transport codes PARTISN [63] and TORT-TD [64] make use of this

method, the first without delayed neutrons but time-dependent external source and the

latter only for the homogeneous form of the transport equation.

The main approximation of the time discretization is displayed in equation (2.55). It

expresses the time differential of the angular neutron flux at time tτ+1 as difference of the

flux at tτ+1 and tτ over the time step ∆t = (tτ+1 − tτ ).

1

vg

∂

∂t
ψg(r,Ω, t)

∣∣∣
tτ+1

' ψg(r,Ω, tτ+1)− ψg(r,Ω, tτ )

vg ∆t
(2.55)

The same time discretization must be applied to the precursor equation (2.56).

∂

∂t
Cj(r,Ω, t)

∣∣∣
tτ+1

' Cj(r, tτ+1)− Cj(r, tτ )

∆t
(2.56)

The time discretizations of eq. (2.55) and eq. (2.56) are now inserted into equation

(2.1) and (2.2), respectively. On the right hand side of the resulting equation (2.57) the

time-dependent variables are integrated from tτ to tτ+1.

ψg(r,Ω, tτ+1)− ψg(r,Ω, tτ )

vg ∆t
= −

tτ+1∫

tτ

dtΩ · ∇ψg(r,Ω, t)

−
tτ+1∫

tτ

dtΣtg(r)ψg(r,Ω, t) +
∑

g′

∫
dΩ′Σsg′g(r,Ω

′ → Ω)

tτ+1∫

tτ

dt ψg′(r,Ω
′, t)
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+ χpg(r)(1− β)
∑

g′
νtg′(r) Σfg′(r)

tτ+1∫

tτ

dt φg′(r, t)

+
∑

j

χjg(r)λj

tτ+1∫

tτ

dt Cj(r, t) +

tτ+1∫

tτ

dtQg(r,Ω, t) (2.57)

The integration is carried out in the form of equation (2.58).

tτ+1∫

tτ

dt a(t) ' a(tτ+1) ∆t (2.58)

The execution of the integration for the precursor term in the last line of equation (2.57)

yields the precursor concentration Ctτ+1

j which in turn depends on the flux of the actual

time step φtτ+1

g′ (compare eq. (2.61)) for which the modified transport equation is solved.

To remedy the mutual dependence the precursor concentration of eq. (2.61) is inserted

in the equation, thereby gaining the known precursor concentration of the last time step

and an additional occurrence of φtτ+1

g′ . The resulting terms can be ordered in a way that

the final equation (2.59) looks formally like the common inhomogeneous or fixed source

transport equation, even if the static problem was the homogeneous equation.

[
Ω · ∇+ Σ̃g(r)

]
ψtτ+1
g (r,Ω) =

∑

g′

∫

4π

dΩ′Σsg′g(r,Ω
′ ·Ω)ψ

tτ+1

g′ (r,Ω′)

+ χ̃g
∑

g′
νtg′Σfg′(r)φ

tτ+1

g′ (r) + qtτ+1
g (r,Ω) (2.59)

The fixed source is constructed of the real external neutron source, the delayed neutron

source and a new term called time source (eq. (2.60)). The time source holds the connection

to the preceding time iteration. Neutrons from the previous time step reenter into the

actual time step.

qtτ+1
g (r,Ω) =

1

∆t

∑

j

χjgλjγjC
tτ
j (r)

︸ ︷︷ ︸
Delayed neutron source

+
1

vg∆t
ψtτg (r,Ω)

︸ ︷︷ ︸
Time source

+ Qtτ+1
g (r,Ω)

︸ ︷︷ ︸
External source

(2.60)

After the flux solution of the tτ+1 time step was achieved, the new precursor concentration

will be evaluated with equation (2.61).

C
tτ+1

j (r) = γj

[ 1

∆t
Ctτj (r) + βj∆t

∑

g′
νtg′Σfg′(r)φ

tτ+1

g′ (r)
]

(2.61)

The reordering has changed the meaning of some of the common constants of the
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Chapter 2. Theory of Neutron Transport in Pulsed Neutron Source Experiments

transport equation. Modified constants are indicated by the tilde, so as the modified total

cross section, which now has an additional "time absorption" term (eq. (2.62)). Moreover,

the former prompt fission spectrum carries now an additional term involving the delayed

neutron fission spectra (eq. (2.63)).

Σ̃g(r) = Σtg(r) +
1

vg∆t
(2.62)

χ̃g(r) = χpg(r) (1− β) +
∑

j

χjgλjγjβj (2.63)

γj =
∆t

1 + λj∆t
(2.64)

Other possible time discretization schemes are the explicit and the central-difference

scheme. While the implicit and explicit schemes are accurate only to the order O(∆t),

the central-difference scheme is accurate to the order O(∆t2) [65]. However, the accuracy

can be always improved with a sufficiently small time step. The reason for the choice

of the implicit scheme is the unconditional stability that can be proved. This property

leads to the preferable behavior that an error in the time discretization - introduced by a

too large time step - will not grow with every time step. The central-difference scheme is

also unconditional stable, but the numerical effort significantly higher, so that the implicit

scheme seems to be a good compromise.

As can be seen so far in the time discretization of the time-dependent transport equation,

the only approximations applied were the implicit time scheme and multigroup representation

of the energy dependence. If the energy group structure can cover the general physical

effects of the problem and the time steps are chosen properly to not violate the restrictions

given by the discretization scheme, then the correct implementation of equations (2.59) and

(2.60) can describe the propagation of neutrons after a neutron pulse, the redistribution of

the neutron field from a very excited state to a potential fundamental mode decay till the

neutron flux stabilizes on the level of the delayed neutron background. This simulation will

therefore incorporate completely the effects, for which a huge number of modes would be

needed to include the "harmonic distortion", and will resemble the "kinetic distortion",

because the neutrons are allowed to move according to the underlying physical principles.

Wigner mentions the shortcoming of the time-dependent diffusion equation, in that the

wave-like propagation of neutrons after a pulse cannot be properly taken into account [66].

The reason is that the static diffusion equation is equivalent to the spherical harmonics

approximation of the transport equation truncated after the first order (P1 approximation).

The commonly used time-dependent diffusion equation skips additional time-dependent

terms, which origin from the time-derivative applied on the spherical harmonics flux

representation. The time-derivatives considered lead to the "Telegrapher’s equation", in
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which the spatial flux propagation obeys a "wave front". The neutron velocity however is

still wrong by a factor of
√

3. The general conclusion is that if the solid angle is represented

in a suitable manner and the time-derivative can be resolved properly, which is the case

in the discrete ordinates transport approximation, then this physical effect of the very

fast wave-like neutron propagation through the reactor medium could be accounted for.

However, studies show a very short time interval in the range of 10−8 s to 10−7 s, where

such effects are visible [67].
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Chapter 3

Development of a New Microscopic

Master Library for General Reactor

Calculations
Deterministic cross section code systems use typically a two step approach for whole

core calculations. The first step is devoted to the generation of effective macroscopic

cross sections of material regions. The procedures rely on cell calculation methods, which

especially account for energy and spatial self-shielding effects. The energy group structure

thus is sufficiently fine and the geometry is largely resolved to treat the heterogeneity of the

cell. The obtained neutron fluxes of the material regions are used for the homogenization

and collapsing to few group constants. In the second step parts of or the whole reactor

is subdivided into coarser material regions without internal structure and the transport

or diffusion equation is solved for the neutron flux. The first three sections 3.1, 3.2 and

3.3 of this chapter deal with the refinement of the energy structure in the KANEXT code

system leading to a new group structure for general reactor calculations, the processing of

the continuous energy cross sections to the multigroup form and the validation in a unit

cell calculation of the YALINA-Thermal reactor, respectively. Then, section 3.4 relates to

the development of tools for the generation of constants needed for time-dependent core

calculations. Finally, the second step is addressed in section 3.5, where the validation work

is continued on the core level of the YALINA-Thermal reactor.

3.1 Development of a Flexible Energy Group Structure

The early KANEXT master libraries were based on a 26 groups structure for fast reactor

applications [68,69]. It was in particular for the sodium cooled fast reactor purpose observed

that the slowing down was not correctly accounted for in the coarse group structure, so

that a 208 groups fine structure was employed for the improvement of the scattering

treatment [68, 70,71]. The extension of KANEXT to the field of Light Water Reactor (LWR)

lead to the implementation of the original 69 groups WIMS structure [72,73]. This famous

energy group structure is characterized by 14 fast energy groups from 10MeV to 9.118 keV,

13 resonant energy groups from 9.118 keV to 4 eV and 42 thermal energy groups from

4 eV to 0.001 eV. This structure has been used for a broad range of (epi)thermal and fast

reactor calculations, because it combines the advantages of thermal and fast calculation

29



3.1. Development of a Flexible Energy Group Structure

characteristics like detailed up- and downscattering.

Based on this extensively validated WIMS group structure the recent JEFF 3.1, JEFF 3.1.1

and ENDF/B VII.0 evaluations were adapted to 69 groups master libraries. In order to

account for the high energetic neutrons from the (d,t) neutron source, the upper group

boundaries have to be extended. The energy subdivision above 10MeV should reflect the

current knowledge of suitable group structures for fusion neutrons with deterministic codes.

For this study, a new 350 energy groups master library has been created, which is

more generally applicable to account for high energy neutrons from fusion neutron sources

that are often used in ADS experiments. Therefore, the energy structure above 10MeV is

refined with 16 additional energy groups with the group boundaries of the VITAMIN-J group

structure [74]. The various VITAMIN structures have been used for shielding investigations

of fusion neutrons and can be considered as validated. In view of a library for general

application in LWRs and Fast Breeder Reactors (FBRs) the energy structure below 10MeV

is also refined. Between 4 eV and 10MeV the energy boundaries of a 334 group library

investigated and approved by Broeders [73] have been applied. With this very much refined

group structure the slowing-down of the neutrons can generally much better be described in

the epithermal and fast energy range. Moreover, the broader resonances of many important

nuclides towards higher energies are directly accounted for. The resulting 350 energy groups

neutron flux will serve as a general and improved weighting flux for the homogenization

procedure.

The summarized properties of the 350 energy groups microscopic master library are:

• Extension to the maximum neutron energy of 19.64MeV

• 16 energy groups above 10MeV with an energy spacing about 0.5MeV, narrowed to

0.35MeV around 14.1MeV

• The energy boundaries between 4 eV and 10MeV are generated with a lethargy width

∆u = log(
Eg
Eg+1

) ' 0.05, resulting in 292 energy groups

• Dominant resonances are carefully covered

• Below 4 eV the 42 energy groups of the original WIMS structure is kept with a minimum

energy of 0.001 eV

• Between 0.001 eV and 10MeV the original 69 energy group boundaries are included

as a subset for the purpose of group collapsing

See Appendix B.1 for a complete listing of both energy group structures.

Although the energy limit of about 20MeV is well below the energies of spallation

neutrons, it is possible to use these libraries in case of deterministic reactor calculations
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with spallation sources. Investigations show that about 86% of the neutrons leaving the

target window have energies below 20MeV [44].

3.2 Processing of the ENDF-6 Data Files

The microscopic multigroup cross section libraries for the KANEXT system are generated

with a well validated procedure shown in fig. 3.1. To prepare the cross sections, the nuclear

data processing code NJOY is used [23]. It reads the ENDF-6 formatted evaluated data

files [75], adds both resolved and unresolved resonance data to the continuous energy data

and generates multigroup cross section data by means of the module GROUPR. The main

cross section data is stored in the MATXS format, delayed neutron data in the DLAYXS format.

All file formats of NJOY are available from the manual [23]. The conversion code NJOYPROC

(see Appendix B.2.3.2) transfers these cross section data to the KANEXT format GRUBA [76]

which can be handled directly with the group constant management program GRUMA [77].

Finally, all nuclide cross sections are stored into a microscopic master library.

Figure 3.1: NJOY flow chart

To the common properties of all new KANEXT libraries belong the set of temperatures

(300K, 900K, 1200K, 1500K, 2000K and 3000K), for which complete multigroup cross

section data sets exist. The Legendre expansion of all scattering-like, i.e. (n,n), (n,n′), (n,n),

(n,2n), (n,3n), (n,4n), (n,xn), transfer cross sections is stored up to the fifth order. For all
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materials processed the free gas thermal scattering transfer cross sections [1, 23] are added.

Only for hydrogen in water, hydrogen in Polyethylene (PE) and carbon in graphite the

corresponding thermal cross sections are prepared with the S(α, β) tables of the evaluation

data file in section MF7 [75] together with the THERMR module of NJOY. As a last point

exhaustive retaining of reaction types is practiced for usage and combination at run time.

For thermal reactor investigations a slightly modified EPRI-CELL weighting spectrum

of the NJOY code is used [23]. The original spectrum exhibits a local maximum at fusion

neutron energies around 14.1MeV. For the generation of the new libraries this spectral

maximum is smoothed out, since the new group structure is sufficiently fine on one hand

and on the other it would misweight the cross sections in the rather broad first energy group

between 6.0655MeV and 20MeV of the 69 groups library in case of a neutron-source-free

problem.

According to this procedure, the master libraries are generated for the JEFF 3.1,

JEFF 3.1.1, and ENDF/B VII.0 evaluated data files. The libraries of the JEFF data files

are complemented by the activation nuclide data sets [78] containing only scalar cross

sections for capture, fission, (n,2n), etc. This extended nuclide data set allows the generation

of problem dependent burn-up cross sections, but cannot be used for transport calculations

due to the lack of energy-angle transfer cross sections. In table 3.1 these extended libraries

are marked with the letter "A". The suffix "LWR" indicates the thermal reactor weighting

spectrum. The 350 groups libraries are generated as well with the modified EPRI-CELL

spectrum, but disclaim this suffix, because they show very satisfactory performance in both

thermal and fast reactor applications due to the fine group structure.

Table 3.1: New generated multigroup libraries

File name Evaluation Number of materials

G69P5JEFF31ALWR
JEFF 3.1

799 (381 full evaluated + 3 thermal + 415
activation and pseudo nuclides)

G69P5JEFF311ALWR
JEFF 3.1.1

799 (381 full evaluated + 3 thermal + 415
activation and pseudo nuclides)

G69P5E70BLWR
ENDF/B VII.0

406 (393 full evaluated + 3 thermal + 10
pseudo nuclides)

G350P5JEFF31A
JEFF 3.1

799 (381 full evaluated + 3 thermal + 415
activation and pseudo nuclides)

G350P5JEFF311A
JEFF 3.1.1

799 (381 full evaluated + 3 thermal + 415
activation and pseudo nuclides)

G350P5E70B
ENDF/B VII.0

406 (393 full evaluated + 3 thermal + 10
pseudo nuclides)

For easier referencing table 3.2 presents the abbreviations for short-hand use in the next

chapters.
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Table 3.2: Abbreviations of the libraries

Abbreviation File name Evaluation

B69a G69P5JEFF31ALWR
JEFF 3.1

B69b G69P5JEFF311ALWR
JEFF 3.1.1

B69c G69P5E70BLWR
ENDF/B VII.0

B350a G350P5JEFF31A
JEFF 3.1

B350b G350P5JEFF311A
JEFF 3.1.1

B350c G350P5E70B
ENDF/B VII.0

3.2.1 Thermal Scattering Cross Sections

The YALINA-Thermal reactor is built up of significant masses of well moderating materials.

The fuel rods are contained in a matrix of PE blocks constituting the fuel assembly. The

reflector consists of large blocks of graphite. Both materials have large moderating ratios.

A report [79] mentions for the relevant energy range a ratio of about 122 for PE. The

ratio of graphite is listed in textbooks e.g. [80] to be around 200. Consequently, it is of

great importance to handle the scattering properties of these materials to the best available

knowledge.

The thermal scattering cross sections for certain nuclides bound in molecules are found

in the MF7 section of the evaluated nuclear data files. Here, the files for hydrogen bound in

PE and carbon in graphite files have to be processed, in order to get the complex scattering

matrices in the thermal neutron energy range into the KANEXT multigroup libraries. The

neutron energy group structure between 0.001 eV and 4 eV is generally that of the WIMS

reactor physics code system [72] and all presented group structures use this thermal structure

below 4 eV.

Some of the important scattering properties like the energy transfer and angular de-

pendence are furthermore analyzed in view of the use in deterministic transport solvers.

The relevant results of the YALINA-Thermal pin cell characterization of section 3.3.1 are

therefore anticipated as far as average neutron energy and energy of the peak flux are

concerned.

3.2.1.1 Polyethylene

PE is defined by the molecule formula CH2 and is used as moderator mainly in zero-power

research reactors and cold neutron facilities. All recent nuclear data evaluations provide the

MF7 S(α, β) tables for PE. The origin of all of them is the work of Sprevak and Koppel [81].

In recent evaluations only adjustments to new hydrogen cross section measurements and
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additional temperatures and energy ranges (cold neutron applications) have been added

without changing the theory in the original energy range [82].

PE briefly is characterized as a macro molecule of infinite length, where the CH2 radicals

are positioned at the vertex of a "zig-zag" chain [81]. Because of the weak coupling of

neighboring chains the incoherent approximation is chosen for the scattering law. While the

resulting S(α, β) table only describes the hydrogen bound in PE, the carbon is modeled in

the free gas approximation. The thermal multigroup scattering cross section set for PE is

generated according to the flow diagram of fig. 3.1. The input options of the THERMR module

are such that they consider the incoherent elastic scattering contributing to the self-scatter

part of the transfer matrices and the incoherent inelastic scattering for all energy transfer

from the S(α, β) tables [23]. The available temperatures are 293.6K and 350K and the

maximum thermal energy is defined as 10 eV in the NJOY input.

Fig. 3.2a compares the total microscopic scattering cross section of three variants of

hydrogen at 293.6K in the multigroup form. It is obvious that the free gas treatment of

hydrogen cannot be used to approximate the scattering cross section of PE. In comparison

to the scalar cross section of hydrogen in water, small differences are observed. The

neighboring graph (fig. 3.2b) distinguishes between the incoherent elastic and inelastic

scattering cross sections of PE, which in sum constitute the total scattering cross section.
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Figure 3.2: Scalar scattering cross sections at 293.6K

The next diagram (fig. 3.3) shows the energy transfer of PE for thermal neutron energies

up to 10 eV. Mathematically, the energy transfer matrix is given by the zeroth moment

of the Legendre representation of the energy-angle dependent scattering. The thin lines

represent the energy group boundaries. The abscissa specifies the incident neutron energy

for which a secondary energy distribution exists on the ordinate. The diagonal line of

squares marks the scattering of the neutron from the incident energy group to the same

energy group (self-scattering). All what is located above this diagonal, is scattering towards
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higher energy groups (upscattering), and everything below is scattering towards lower

energy groups (downscattering). In terms of the theory of two body scattering, hydrogen is

an "ideal" scatterer, since it allows the maximal energy transfer by collision of particles

of similar size. This is underlined by the fact that all downscatter positions are filled

with non-zero probabilities. Additionally, one observes significant upscattering in the very

thermal energy groups which ranges over almost two decades of energy.

0.001 0.01 0.1 1 10

Energy [eV]

0.001

0.01

0.1

1

10

S
ec
o
n
d
a
ry

E
n
er
g
y
[e
V
]

0.001

0.01

0.1

1

10

100

σ
(E

→
E

′ )
[b
]

Figure 3.3: Energy transfer of PE at 293.6K

The anisotropy of the scattering reaction in deterministic methods is approximated

by the Legendre moments higher than the zeroth. Applying the newly developed KANEXT

module SCAPLO (Appendix B.2.1), the angular neutron distribution can be plotted in

the dependence on the energy group. The flux solution of a YALINA-Thermal unit cell

calculation (anticipating section 3.3.1) yields an average neutron energy of 3.73 eV in the

fuel region and 2.05 eV in the moderator region. For the energy groups of the formerly

described energy structures enclosing these averages the angular neutron distribution will

be investigated. The first graph in fig. 3.4a describes the average probability of the neutron

to be emitted with a particular direction (written as µ, the cosine of the scattering angle

θ) for a neutron with the incident energy laying between 2.1 eV to 2.6 eV. In the common

scattering nomenclature µ = −1 is the full backward scattering with the scattering angle

θ = 180°. Then, µ = 1 denotes the full forward scattering with the scattering angle θ = 0°.

Note that the specification of the Legendre order in the legend of the graph denotes the

sum of the contributions up to the specified Legendre moment rather than the isolated
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distribution of one of the Legendre moments. For this energy group a preferred scattering

into the forward directions is observed, for which the following two figures 3.4b and 3.5a

are additional examples. This directional dependence can only be described satisfactorily,

if a Legendre series expansion of order higher than one is used. Applying the first moment

(linear anisotropy) may be the worst, since not only the complex structure of the directional

dependence is getting lost, but also a non-physical negative scattering contribution is added

in the backward direction, where the scattering is essentially almost zero. This truncation

error may lead to numerical problems in neutron transport codes in terms of negative fluxes.
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Figure 3.4: Differential scattering cross section at the incident neutron energy range 2.1 eV
to 2.6 eV as function of the cosine of the scattering angle µ and the order of
the Legendre expansion at 293.6K for PE
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(a) Downscattering into the first adjacent group
(1.5 eV to 2.1 eV)
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Figure 3.5: Differential scattering cross section at the incident neutron energy range 2.1 eV
to 2.6 eV as function of the cosine of the scattering angle µ and the order of
the Legendre expansion at 293.6K for PE

The following angular distributions of fig. 3.6 belong to the neutron energy group of the

peak flux of the unit cell calculation (see section 3.3.1). It is located at a typical thermal
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neutron energy range (0.025 eV to 0.03 eV) close to the 2200ms−1 neutron velocity. This

energy group obeys the trend of preferred forward scattering (fig. 3.6a) which is enforced

by the dominant self-scattering part (see fig. 3.6b). The plotted up- and downscatter parts

(fig. 3.7a and fig. 3.7b) scatter more isotropically with rather low probability. For these

graphs the first moment fits better to the averaged behavior, but produces nevertheless

negative contributions.
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Figure 3.6: Differential scattering cross section at the incident neutron energy range 0.025 eV
to 0.03 eV as function of the cosine of the scattering angle µ and the order of
the Legendre expansion at 293.6K for PE
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(a) Upscattering into the first adjacent group
(0.03 eV to 0.035 eV)
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Figure 3.7: Differential scattering cross section at the incident neutron energy range 0.025 eV
to 0.03 eV as function of the cosine of the scattering angle µ and the order of
the Legendre expansion at 293.6K for PE

The up- and downscattering over the large energy group ranges will have its influence on

the iteration in any deterministic code. However, the original fine group structure is mainly

used in cell calculations, so that the demand in terms of the scattering treatment is huge,

but in terms of the geometry rather limited to some material zones in a cylindrical cell.
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The thermal scattering cross section and matrices are stored on the recent KANEXT

multigroup libraries under the nuclide name 'HPOLY___' for the temperatures 293.6K and

350K, in between which every temperature can be linearly interpolated (as recommended

by McFarlane [23] and Keinert and Mattes [83]). The Legendre order may be chosen

up to the fifth order. Above 10 eV the original hydrogen cross sections are added. The

recommended [84] carbon cross sections treated as free gas and compiled for the appropriate

temperatures are available under the nuclide name 'CPOLY___'.

3.2.1.2 Graphite

The thermal cross sections for graphite originate from the work of Young and Koppel [85]

and Young et al. [86]. For subsequent evaluations Keinert and Mattes for JEFF 3.1 [87] and

McFarlane for ENDF/B VI [88] refined the α and β grid and ranges of the S(α, β) tabulation.

In addition, the scalar cross section has been adjusted to more recent measurements. A

thorough investigation by Mattes and Keinert [87] confirmed recently the overall accurateness

of the nearly 45 years old methodology in comparison to two additional models.

Graphite is hexagonal in its planar structure holding effectively four atoms in a unit

cell. Fig. 3.8a underlines the need to consider the thermal scattering in carbon bound in

graphite separately from the free gas model. The binding between the planar sheets have

been found weakly coupled, while the binding in between the hexagonal planes is strong.

This fact of interfering elements in a crystal lattice becomes important, when the de Broglie

wavelength of the neutron is of similar size as the lattice spacing [1]. This happens for

energies around 0.01 eV and as shown in fig. 3.8b is observed between 0.001 eV to 0.1 eV for

graphite. At these energies Bragg effects cause sharp spikes in the course of the scattering

cross section, which are computed for the coherent elastic scattering by the THERMR module

of NJOY. Additionally, the incoherent inelastic scattering cross section is taken into account

through the S(α, β) tables of the MF7 file, which is a smooth function of energy. The

sum of contributing scattering reactions forms the total scattering cross section and the

associated scattering matrices.

The energy transfer of graphite is visualized in fig. 3.9. For this graph the same formal

description holds as for fig. 3.3. It is obvious that the energy range of downscattering is

much smaller than for hydrogen in PE, which is firstly a consequence of the less good

scattering properties due to the larger molar mass. Moreover, the scattering probability

reduces very much when the diagonal element is left in both directions of the secondary

energy distribution. Upscattering appears relevant only for the first neighboring energy

group, thus the self-scattering is the main scattering mechanism and is dominated below

0.1 eV by the coherent elastic scattering cross section.

When assessing the anisotropic scattering property, the behavior can be subdivided

into two parts. When incoherent inelastic scattering is dominant or non-self-scattering is
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Figure 3.9: Energy transfer of graphite at 293.6K
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regarded, even the first Legendre moment can reproduce the general trend (see figures

3.10a, 3.10b, 3.11b). As soon as the focus switches to the coherent elastic scattering (always

the self-scattering part), the comparison of different Legendre orders for the cross section

reconstruction shows no convergence up to the ninth Legendre order (fig. 3.11a).
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Figure 3.10: Differential scattering cross section at the incident neutron energy range 0.18 eV
to 0.22 eV in the upper graphs and 0.025 eV to 0.03 eV in the other as function
of the cosine of the scattering angle µ and the order of the Legendre expansion
at 293.6K for graphite
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Figure 3.11: Differential scattering cross section at the incident neutron energy range 0.18 eV
to 0.22 eV in the upper graphs and 0.025 eV to 0.03 eV in the other as function
of the cosine of the scattering angle µ and the order of the Legendre expansion
at 293.6K for graphite

From this investigation it can be concluded that having significant flux below 0.1 eV in

the range of dominant coherent elastic scattering makes the treatment of the anisotropy

difficult for deterministic transport methods in the frame of the Legendre expansion.

Graphite is available under the name 'CGRPH___' in the recent KANEXT libraries. It has
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been prepared for ten temperatures (293.6K, 400K, 500K, 600K, 700K, 800K, 1000K,

1200K, 1600K and 2000K), which are used as linear interpolation basis for every tempera-

ture in between. The Legendre order may be chosen up to the fifth order. Above 10 eV the

original carbon cross sections are added.

3.2.1.3 Conclusion on the Thermal Scattering Cross Sections

The energy and angular scattering transfer properties have been outlined for the materials

PE and graphite. In both cases difficulties are observed to describe the combined energy-

angle scattering behavior in terms of the Legendre expansion.

It is quite common to apply one- or two-dimensional discrete ordinates transport codes

for the cell calculation with detailed energy representation. The angular plots of the last

two sections can be directly interpreted in that context. The continuous scattering cosine

of the abscissa denoted by µ becomes a cosine of discrete directions u and v given by the

dot product µuv = Ωu ·Ωv of all possible directions imposed by the angular quadrature

set. The higher the quadrature order, the more will the cosine range be subdivided and

involve parts of the curve that violate the required positivity of the scattering transfer

values depending on the applied Legendre order.

Further investigations have to analyze how the violation of the physical and numerical

requirements with the truncated Legendre expansion relates to the energy discretization

applied in the microscopic cross section library. The numerical reason of these issues may

be found in the use of small energy groups which in turn can lead to the fragmentation of

the angular distribution. Since the Legendre functions themselves are smooth functions

over the scattering angle, discontinuous curves have to be constructed from high order

superpositions of the functions. With a truncation of the Legendre expansion at usually an

order smaller than 3 in typical reactor calculations such situations cannot be covered.

When the fine group transfer cross sections are collapsed to effective few group cross

sections, the broadening of the energy group boundaries and the flux-weighted averaging of

the Legendre coefficients most likely wash out the fragmentation. The few group scattering

cross sections may be therefore numerically less violating. Further investigations should lead

to a quantification of the impact on key quantities introduced by inappropriate Legendre

expansion usage in fine energy calculations for the generation of few group cross sections.

3.3 Validation on YALINA-Thermal Pin Cell Level

3.3.1 Reference Monte Carlo Pin Cell Characterization

Monte Carlo (MC) codes are often used to provide reference solutions for deterministic

calculations where experimental results are not available. They offer exact geometry
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3.3. Validation on YALINA-Thermal Pin Cell Level

representation of typical geometric patterns and use usually continuous energy cross sections.

However, the stochastic treatment of the neutron transport equation introduces also the full

range of statistical problems, which can lead to difficulties in obtaining the target quantity

with small standard deviation.

For the validation of the deterministic pin cell investigation MC calculations with the

exact geometry (see fig. A.6a) are carried out and compared successively with the geometric

approximations leading to the deterministic model of the three zones Wigner-Seitz cell

(fig. A.6b). The detailed description of the unit cell simplifications are summarized in

Appendix A.3.1. The MC code used is MCNP5 v1.51 [89] with JEFF 3.1 continuous energy

cross sections [90] processed and provided by the OECD/NEA data service. In general, the

steps of geometric simplification and the influence of the Boundary Condition (BC) are

investigated.

Table 3.3 lists the obtained multiplication factors of the approximation steps. As

standard deviation the value of the 1σ confidence interval is given in parentheses. The first

three entries are related to the exact geometry with a square unit cell. For this type of cell,

the correct boundary condition for an infinite number of these cells is the periodic boundary

condition [1, 91]. If the cell is reduced to the Wigner-Seitz cell, the recommendation states

that the neutron should reenter with an isotropic distribution to impose a more diffusive

reflection. This is equivalent to the white boundary condition. As a side note, the reflective

condition could be used in the case that the moderator region had a thickness of several

mean free paths. The mean free path is about 4.4mm, thus almost as long as the thickness

of the moderator (5.8mm).

The result of C2 confirms that the air gap may be smeared with the cladding by extending

the clad radius to the outer gap radius and reducing the cladding density accordingly. It

adds a small amount of 15 pcm to the multiplication factor. This is the postulate of the

simplified geometry to fit in the KANEXT unit cell model. It is also seen that using the

Wigner-Seitz approximation with the aforementioned white boundary condition introduces

about 220 pcm of additional reactivity for case C4b. This case must be used when the

direct comparison with the KANEXT pin cell calculation is performed, however it is kept in

mind that the real multiplication factor of the infinite cell is somewhat lower.

Fig. 3.12 shows the neutron flux in the fuel and moderator region in unit lethargy

calculated by MC. Since a 350 energy group structure is used in the deterministic calculation

this is employed here as well. The group boundaries can be found in Appendix B.1. The

standard deviation of the flux is generally small in the energy range of thermal neutrons

up to the average energy of the fission neutrons, in real values we obtain between 0.001 eV

and 2MeV a standard deviation smaller than 0.003. The standard deviation increases

the more the emission probability of the fission neutrons decreases. Above 10MeV the

standard deviation is not smaller than 0.016. While the total flux in the fuel is in general
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Table 3.3: MC infinite cell multiplication factors

Case Description BC kinf (1σ [10−5])

C1a Geometry of fig. A.6a periodic 1.366 24(13)
C1b Geometry of fig. A.6a reflective 1.366 07(13)
C1c Geometry of fig. A.6a white 1.366 10(13)
C2 Geometry of fig. A.6a without air periodic 1.366 09(12)
C3a Wigner-Seitz with air reflective 1.372 73(13)
C3a Wigner-Seitz with air white 1.368 17(12)
C4a Wigner-Seitz without air reflective 1.372 86(13)
C4b Wigner-Seitz without air white 1.368 43(13)

greater than in the moderator, a little softer neutron energy spectrum can be seen in the

moderator. A calculated average neutron energy states for the fuel 3.73 eV with a maximum

flux between 0.03 eV and 0.035 eV. We find an average energy of 2.05 eV for the moderator

with a maximum flux between 0.025 eV and 0.03 eV. Between 6 eV and 40 eV the three

s-wave resonances of 238
92U can easily be identified. With a closer look to the resonances of

235
92U the smaller dips around 8.7 eV and 12.4 eV can be understood.
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Figure 3.12: Neutron flux for case C4b in the fuel and moderator region as calculated by
MC

3.3.2 Macroscopic Cross Section Generation

Deterministic transport solvers are fed with effective macroscopic group constants for

homogenized zones. They are created in a procedure, in which the heterogeneity of the

actual cell, its neighboring cells and additionally the need for a reduced number of neutron
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3.3. Validation on YALINA-Thermal Pin Cell Level

energy groups in the core calculation is reflected.

In fig. 3.13 a flowchart of the cross section generation scheme of the KANEXT module

KARBUS is presented [92]. It starts with the initialization of a structured archive file. The

internal organization of KANEXT allows for storing of dedicated results like cross sections,

geometry information, burn-up states from every execution step into this archive and

enables the retrieval for subsequent purposes afterward.

On the basis of volume or weight fractions, material densities, etc., module NDCALC

supplies the number densities of all defined mixtures with their corresponding geometry

information. When all details of the mixtures are known, KARBUS enters a loop to process

the cross sections of all mixtures.

The following paragraph is a brief summary of the comprehensive investigation and

implementation work of Broeders [73], in order to describe the actual generation of effective

cross sections. Module GRUCAL (see [93,94]) creates effective macroscopic cross sections of

each nuclide, and then sums up all these to effective cross sections of the mixture. Formally,

all resonance self-shielding is done by the Bondarenko method [95], thus determining an

appropriate background cross section of the mixture and interpolating the proper self-

shielding factor from a tabulation. Generally, these tabulated values originate from the

Narrow-Resonance (NR) approximation. Module GRUCAL distinguishes between fast reactor

cells and heterogeneous three region Wigner-Seitz cells. The latter can be used for the

spatial resolution of the neutron flux for the homogenization, but special care must be taken

for the resonance self-shielding in thermal systems. When using a 69 groups library as

described above, a fine flux calculation is necessary for the correct resonance self-shielding.

A subsection is devoted to this issue (see section 3.3.4). Moreover, it is accounted for in

the background cross section that the resonance absorption at the surface of a fuel rod is

stronger than in the center because of the resonance energy "filtering" at the surface. In

the end the impact of neighboring fuel rods on the global behavior of an infinite lattice

of cells is considered by the Dancoff correction according to Sauer [96] including also the

improved Bell-Levine factor formalism [97,98].

The usage of the microscopic cross sections of the GRUBA library is not hard-coded in

module GRUCAL, but flexibly defined in an external Formula Definition File (FDF). From

this file GRUCAL is instructed e.g. which reaction labels contain the self-shielding factors

and which formula is to be used to interpolate for the actual background cross section

and temperature. 50 formulas exist to sum, multiply, interpolate library data or already

calculated data. In order to account for the changes introduced during the creation of the

new microscopic master library the FDF is completely rewritten and its details can be

found in Appendix B.2.3.1.

After GRUCAL has delivered the self-shielded group cross sections of each mixture in

the standard KANEXT format SIGMN [99, 100], a cell calculation is carried out, either with
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Figure 3.13: The KARBUS cross section generation sequence
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a spatially resolved one-dimensional transport code or with a zero-dimensional diffusion

calculation in case of homogenized number densities. Both paths of the branch in fig. 3.13

are used. The mixture of the fuel unit cell contains three cell mixtures (fuel, clad, moderator)

and its cross sections are transferred to the transport module. The standard cell module

is the first collision module WEKCPM [101]. It solves the one-dimensional integral transport

equation with isotropic scattering and a transport correction of the total cross section. In

order to make available a transport code with full anisotropic scattering capabilities, the

new module KANISN [102] is introduced for a one-dimensional transport calculation based on

the discrete ordinates transport method. Further details to this development can be found

in Appendix B.2.2. The other branch calls module DIFF0U [103] for a zero-dimensional

diffusion calculation.

The cell calculation resides in a second loop, which aims at providing the correct fission

spectrum of the fissionable nuclides. If there is more than one fissionable nuclide, the fission

spectra need to be weighted by the fission rate of the nuclides. The fission rate however

is not known until the cell calculation provides the flux in the fuel region. The applied

strategy is to define the main fission nuclide, for which the fission spectrum is taken for the

initial cell calculation. With the resulting fuel region flux the module CHICOR [104] averages

the fission spectra [73]. The change in the fission spectrum affects the eigenvalue and fluxes.

Thus, the second loop is terminated, when the eigenvalue has converged within some tight

convergence criterion.

In case of a multiregion calculation the regions of the cell are homogenized with the zone

fluxes in the module ONEHOM [105]. The resulting homogenized cross sections of all mixtures

are then given to the module BUCITU [106]. It uses the module DIFF0U to perform a buckling

iteration by adjusting the leakage of the system to achieve a multiplication constant equal

unity. The resulting fluxes are needed for the collapsing of the cross sections. Finally, the

homogenized collapsed cross sections are stored in the prepared archive file.

A further remark relates to the treatment of mixtures without fissionable nuclides. For

the core calculation these cross sections need also to be collapsed. Common approaches

are to use a standard e.g. Pressurized Water Reactor (PWR) spectrum or the spectrum of

the cell calculation. The KANEXT approach is different. Module NDCALC uses mixtures with

the identical amount of nuclides per mixture. This is a concession to the design of module

SIGMUT [99], where only the coupling of cross section data blocks with exactly the same

nuclides and reaction types was possible. Consequently, tiny amounts of fissile materials

proportional to the cell material definition are found in non-fissile mixtures. The KANEXT

procedure is to use the sequence of fig. 3.13 and to branch into the DIFF0U path. The

resulting eigenvalue is obviously meaningless but the flux includes the fission spectrum

information of the fissioning nuclides and the energetic self-shielding of the remaining

material. To get the weighting flux for the collapsing of the cross sections in module BUCITU
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the module DIFF0U is used then with zero buckling.

3.3.3 Results of the Pin Cell Calculation

For the comparison with reference MC pin cell results of section 3.3.1 an optimized setup

has been used. The summarized items of the cell calculation are:

• The new 350 energy groups libraries of table 3.2 with the new FDF FENDFJEF

(Appendix B.2.3.1)

• Fine flux calculation between 4 eV and 500 eV with the module ULFISP for the self-

shielding of the scalar elastic, capture and fission cross section (see section 3.3.4)

• Cell calculation with the newly introduced 1-D discrete ordinates transport module

KANISN (Appendix B.2.2) using S8P2 approximation and a point flux convergence

criterion of 10−6

• Fission spectrum calculation for steady-state fission spectrum including the delayed

neutron spectra with the extended module CHICOR (see section 3.4.2)

• Case C4b of table 3.3: Three region Wigner-Seitz geometry with white boundary

condition

In the first step of the comparison the multiplication factors obtained with JEFF and

ENDF/B data sets are shown in table 3.4. Note that in case of the JEFF cross sections, the

JEFF 3.1 cross sections have been used in both MC calculations. The agreement between

KANEXT and MC for all libraries is very good within 45 pcm. For comparison, the difference

between the KANEXT and the MC results for the original geometry (case C4a) is about

300 pcm.

Table 3.4: Comparison of the final KANEXT multiplication factor with the MC reference
calculation

Library kKANISNinf kMCNP5inf ∆kC4b
inf [pcm] ∆kC4a

inf [pcm]

B350a 1.368 76 1.368 43a 33 264
B350b 1.368 87 1.368 43a 44 275
B350c 1.369 33 1.368 93b 40 294c

a JEFF 3.1 b ENDF/B VII.0 c C4a recalculated with ENDF/B VII.0

At this stage, the energy dependent group fluxes calculated by module KANISN and MC

are analyzed. Looking to the high energy range of fig. 3.14 an oscillation of the difference

with a big amplitude above 10MeV is noticed. Here, the absolute flux values are very small,

because the appearance of fission neutrons is unlikely. In the deterministic case even small
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appearances of neutrons can be transported without problems. In the case of MC the flux

is delivered with large statistical errors and a dedicated variance reduction with an energy

weight window may halve the error, but even then it is above 20% in this calculation.

However, for the actual comparison the MC related problem is not too important, the

interest lies in the group fluxes below 10MeV. Very small differences are observed down to

1 eV, except for the resonance energies of 238
92U as will be discussed in section 3.3.4. These

significant differences are restricted to the energy intervals containing the resonance energy

only.

Finally, the main deviation can be found between 0.1 eV and 0.28 eV. It yields at

maximum about 15% and is located at the rising wing of the Maxwell-Boltzmann like

thermal equilibrium. By inspecting the group structure a widening of the energy mesh

from ∆E = 0.02 to ∆E = 0.04 is exactly found there. A comparison of the relevant part of

the SCALE [107] 238 energy group structure with the applied WIMS structure shows a drastic

concentration of finer energy groups in the thermal energy region with almost twice as

much energy groups. Test calculations show that applying a finer energy mesh can reduce

the maximum difference, but the pronounced difference, however, still remains about 10%.
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Figure 3.14: Comparison of the KANISN 350 energy groups flux with the MC reference

The suitability of the 350 groups flux as weighting flux for coarse group calculations

is analyzed. The cross sections are collapsed with the region flux of the cell calculation.

The coarse group structure is that of the modified 69 groups WIMS structure and a cell

calculation is carried out under the same conditions as before. A small difference of 2 pcm

is achieved in the multiplication factor which confirms the consistency and quality of the

350 groups weighting flux.
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The MC calculation is repeated for the coarser 69 groups structure and serves again as a

reference in fig. 3.15. Additionally, the flux resulting from a calculation with the 69 groups

master library and resulting from the collapsed cross section set are plotted. Since the

thermal energy groups are identical, no change is expected in this region. Above 10 keV a

remarkable reduction of the flux difference between MC and KANISN is observed for both the

fuel and moderator region. The reason for the improvement is due to the oxygen resonances

between 0.4MeV to 10MeV, for which the new group structure can account directly.
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Figure 3.15: Comparison of KANISN 69 energy groups flux with the MC reference

The detailed comparison of MC and KANISN results, using the newly generated master

libraries, shows overall good agreement for the selected group structures. The advantages

of the 350 groups library are slightly better agreement with MC, potential use in providing

a weighting flux for the group collapsing and refined high energy group intervals for the

treatment of external source neutrons. In further investigations the refinement of the

thermal energy group structure will be considered as a potential improvement for the

detailed thermal scattering description.

3.3.4 Impact of the Fine Flux Approach For Energetic Self-Shielding

In any reactor system the energetic self-shielding plays an important role in the accurate

description of the neutron reactions. Over a broad energy range the Narrow-Resonance

(NR) method can describe the effects reasonably well. In the thermal and lower epithermal

energy range other methods are physically more appropriate. For the pin cell calculation

the fine flux treatment of the module ULFISP [73,108] is used. It solves the slowing-down

equation with the first collision probability method for a two region (fuel and moderator)

problem, assuming the flux shape to be constant over the region corresponding to the
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"flat flux" approximation. In the module KARBUS sequence the call of module ULFISP is

organized before the call of module GRUCAL in fig. 3.13. The new self-shielded microscopic

cross sections resulting from the fine flux calculation are stored in a GRUBA [76] formatted

file. In order to use this alternative data instead of the master library data the so called

secondary input option of module GRUCAL [93] is applied.

The energy grid of the slowing-down equation is generated depending on the user

requested maximum error of the linear cross section interpolation. For the subsequent

calculation this value is set to 0.01%. Module ULFISP can handle Doppler broadened

continuous energy cross sections of the NJOY produced PENDF format [23] and the equivalent

of the SCALE code system [107], namely the cross sections for the MC code KENO in the

ENDF/B VI.8 version [109]. Since the continuous energy cross sections for PE are not

easily available in the PENDF format, the SCALE cross section file is used instead. For all

other nuclides the NJOY processed JEFF 3.1 cross sections have been applied. The fine flux

calculation ranges from 4 eV to 500 eV.

The influence of the fine flux self-shielding treatment is shown in table 3.5. For two

libraries with 350 and 69 energy groups and the JEFF 3.1 library the multiplication factors

resulting from KANISN calculations are listed on the one hand for the default (NR) treatment

and on the other hand for the ULFISP self-shielding method. Note that the kinf of the latter

is reported in the preceding chapter. For both group structures the multiplication factor is

improved, most significantly in case of the 69 energy group structure.

Table 3.5: Impact of the fine flux treatment on the multiplication factor

Library kDefault
inf kULFISPinf ∆kinf [pcm]

B350a 1.370 07 1.368 76 131
B69a 1.372 64 1.369 89 275

In order to understand the reason for the fine-flux impact, the cross section structure of
238
92U is discussed briefly. In fig. 3.16 the first resonance of 238

92U at 6.67 eV is predominantly

a capture resonance, because the scattering probability at the resonance energy is about 15

times lower. Looking to the next resonance energy at 20.87 eV the scattering amplitude is

closer to the capture reaction, and in several of the following resonances at e.g. 36.68 eV,

66.03 eV, and 102.56 eV it is on the same level. As the scattering gains in importance, the

differences between the shielding methods are increasing. This is illustrated in fig. 3.17.

In fig. 3.17a the effective macroscopic capture cross section of 238
92U is shown in the two

mentioned energy group structures and for the two approximations in the energy range

from 1 eV to 500 eV. Also plotted is the difference between the two methods for each group

structure. The neighboring graph fig. 3.17b shows the macroscopic elastic scattering cross

section under the same conditions. The slowing down treatment enhances the capturing

strongly and the elastic scattering slightly for the 69 group library. Here, the difference
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in the capture cross section is above 10% with a maximum of about 40% in the third

resonance energy group. Less pronounced but with the same trend the differences in

the elastic scattering cross section can be observed. In case of the 350 group library

the differences are generally lower. How well the default treatment is without fine flux

calculation depends strongly on the cell characteristics. For example, the lattice pitch-to-

diameter ratio influences directly the Dancoff factor, hence the probability that neutrons

stay in the fuel for the next collision or change to another region.
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Figure 3.16: Microscopic capture and elastic scattering cross section of 238
92U

For the moment it is considered that a neutron in the fuel region acts on the coarse

energy mesh. Being scattered into the group that includes the 36.68 eV resonance of 238
92U

means that the next collision is independent of having energies on the right or left wing of

the resonance. A collision, which leads to scattering with 238
92U induces only a little change

in energy due to the scattering law. If the neutron that could stay in the fuel region after

the scattering reaction resides on the right wing of the resonance, the next collision is most

probably a scattering reaction. On the left wing, the neutron is probably captured due to

the dip in the scattering cross section (compare fig. 3.16). This mechanism is explicitly

addressed in the fine flux calculation. The coarse energy structure cannot consider this

effect at all, but the relatively fine energy mesh of the 350 group libraries can cover a great

part of it, since it reproduces the shape of the resonances explicitly (fig. 3.17) and permits

an adequate neutron transport in the cell calculation. For certain fine mesh energy intervals

the difference can however be remarkable, indicating that the energy mesh locally is still

too coarse for this effect.

In order to evaluate the quality of the fine flux improvement, the effective cross sections
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Figure 3.17: Effective cross sections of 238
92U with and without fine flux treatment of module

ULFISP for 350 and 69 energy groups

are also calculated with MC (fig. 3.18). These are obtained by defining two tallies: one

pure flux tally in the requested group structure and one flux tally with a multiplier card

to assign the number density, single material and the reaction type. The latter gives the

reaction rate, which divided by the flux yields the effective cross section. Fig. 3.18a and

fig. 3.18b show the direct comparison of the effective cross sections of the capture and the

elastic scattering reaction obtained by module ULFISP and MC. The difference for both

reactions and group structures is generally within 10% and mostly within 5% of the MC

result.

This investigation shows the necessity of a refined method for resonance self-shielding in

case of the 69 energy group library, where the NR method in combination with the coarse

energy groups in the important 238
92U resonance region underestimates the effective capture

cross section. The direct comparison with MC generated effective cross sections confirms

the self-shielding methodology of the KANEXT code system.

For the 350 energy groups library the resonance treatment is of smaller influence on

the integral result. It is concluded that the finer energy mesh is to some extent capable of

accounting for the self-shielding effect. The new 350 group master libraries are therefore an

improvement over the coarse group libraries, when they are used for scoping calculations

without detailed fine flux treatment.
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Figure 3.18: Effective cross sections of 238
92U as calculated with MC and module ULFISP for

350 and 69 groups

3.4 Constants for Time-Dependent Calculation

In addition to the usual cross sections prepared for a static transport calculation, a time-

dependent code covering the time discretization described in section 2.3 needs the physical

delayed neutron fraction, the delayed neutron abundances and their delayed fission spectra,

the prompt fission spectrum and last the neutron group velocity. The neutron group

velocities are directly connected to the (original or coarse) energy group structure and

will be flux-weighted according to eq. (2.9) with the group- and zone-wise neutron flux

spectrum.

It is common practice, to use tabulated or compiled nuclear data for known fuel types,

e.g. from Keepin [21] or Tuttle [110]. This approach is limited, when the composition of the

fuel includes exotic materials as may encountered in highly depleted fuel, MOX or potential

MA fuels of ADS systems. In such cases material-wise fission rates are needed to properly

include the impact of each fissionable nuclide and its delayed neutron characteristic.

3.4.1 The Physical Delayed Neutron Fraction

A general procedure implemented in the new module DLAYPM [111] is developed to calculate

the problem dependent physical delayed neutron fraction for a mixture of fissionable

nuclides and for the single fissionable nuclide itself. The need for averaging is obvious and is

formulated by Keepin [21], but the physical delayed neutron fractions of the single nuclide

are assumed to be known there. In contrast to that approach, the nuclide and consequently
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the averaged delayed neutron fraction are extracted from the nuclear data itself, accounting

for the energy dependence of the delayed and prompt neutron yields and the problem

dependent fission rate. The lack of such a procedure within the KANEXT environment is

precisely mentioned by Thiem [112].

The implemented eq. (3.1) considers the flux spectrum dependent production of delayed

neutrons for each time group j and nuclide i. The flux weighted sum of the delayed neutron

production is then related to the total production of neutrons (prompt and delayed neutrons)

of the mixture. The flux spectrum is that of the actual cell calculation after the treatment

of module CHICOR (see fig. 3.13).

β =
∑

j

βj =
∑

j

∑

i

βij =
∑

j

∑

i

∑
g
νijg Σi

fg φg

∑
g
νtg Σfg φg

(3.1)

In order to compare intermediate results with values from the literature, eq. (3.2) is

additionally evaluated for the physical delayed neutron fraction of the single nuclide. The

delayed neutron production is now related to the total neutron production of the single

nuclide, thus resulting in the nuclide specific delayed neutron fraction.

βi =
∑

j

βij =
∑

j

∑
g
νijg Σi

fg φg

∑
g
νitg Σi

fg φg
(3.2)

The total neutron yield and the total delayed neutron yield is calculated according to

eq. (3.3).

νix =

∑
g
νixg Σi

fg φg

∑
g

Σi
fg φg

x :





t total neutron fission yield

d total delayed neutron fission yield
(3.3)

Table 3.6 compares the calculated problem dependent total and delayed neutron yields of

the uranium isotopes with measured data from Keepin [21]. The measured data of 235
92U is

taken from fission at thermal neutron energies, whereas only fast data for 238
92U is available.

The Keepin data exhibit the advantage that this data set was redistributed to the new

8 delayed neutron time group representation proposed by Spriggs et al. [113]. This permits

the comparison of one experimental data set to JEFF 3.1 and ENDF/B VII.0 which use 8

and the classical 6 time groups , respectively. It can be stated that all calculated results lay

in between the measuring uncertainty. The delayed neutron fraction of the single nuclide of
235
92U is 2.3% larger in JEFF 3.1 than in ENDF/B VII.0, in case of 238

92U the difference is

7.4%. For both uranium isotopes the results of ENDF/B VII.0 seem to be closer to the

(old) measured data, but recent recommendations of Rowlands and others [114,115] point

54



Chapter 3. Development of a New Microscopic Master Library

to the JEFF 3.1 data on the basis of comparison with integral experiments. The absolute

delayed neutron yield is given there as 0.0162 for 235
92U and as 0.0465 for 238

92U, which is the

largest yield of all actinides.

Table 3.6: Calculated integral delayed neutron parameters (eqs. (3.2), (3.3)) compared to
experimental data from Keepin [21]

235
92U

238
92U

B350aa B350cb Exp. B350aa B350cb Exp.

νt 2.436 60 2.437 33 2.43 ±0.02 2.824 23 2.801 65 2.79 ±0.10
νd 0.016 20 0.015 85 0.0158±0.0005 0.046 08 0.042 55 0.0412±0.0017
βi 0.006 65 0.006 50 0.0065±0.0002 0.016 32 0.015 19 0.0148±0.0008

a JEFF 3.1 b ENDF/B VII.0

In the next tables 3.7 and 3.8 the calculated relative abundances are compared to the

Keepin data. Additionally, the half-lives of the time groups are listed. The new arrangement

of time groups demands a redistribution of the old 6 time groups data, which Spriggs

calls a least-squares fit of least-squares fitted data [113]. This redistributed data has

then been recommended for inclusion into the JEFF 3.1 library for 235
92U and 238

92U [115].

The calculation reproduces the recommended abundances, which is a confirmation of the

correct implementation. Differently in case of ENDF/B VII.0, the evaluators have used

the code CINDER90 [116] to follow individual fission products and their β– decay and fitted

the contributions according to six time groups and abundances [117]. By this approach,

the maximum reduction of 24% in the second time group compared to Keepin’s data is

observed for 235
92U. For 238

92U the maximum reduction is 22% in the third time group, but the

impact of the fast energy threshold fission reaction on thermal reactors is low as expected.

Table 3.7: Comparison of calculated and measured relative abundance aj , redistributed
into 8 groups by Spriggs et al. [113] for 235

92U

B350aa Exp. B350cb Exp.
j T1/2 [s] aj =

βj
β Keepin [21] T1/2 [s] aj =

βj
β Keepin [21]

1 55.600 0.0328 0.0330±0.0042 55.494 0.0320 0.0330±0.0030
2 24.500 0.1539 0.1540±0.0061 21.781 0.1664 0.2190±0.0090
3 16.300 0.0913 0.0910±0.0091 6.337 0.1613 0.1960±0.0220
4 5.210 0.1969 0.1970±0.0236 2.187 0.4596 0.3950±0.0110
5 2.370 0.3308 0.3310±0.0066 0.512 0.1335 0.1150±0.0090
6 1.040 0.0902 0.0900±0.0045 0.080 0.0472 0.0420±0.0080
7 0.424 0.0812 0.0810±0.0016
8 0.195 0.0229 0.0250±0.0009

a JEFF 3.1 b ENDF/B VII.0

The mixture averaged delayed neutron fractions are calculated for the YALINA-Thermal
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Table 3.8: Comparison of calculated and measured relative abundance aj , redistributed
into 8 groups by Spriggs et al. [113] for 238

92U

B350aa Exp. B350cb Exp.
j T1/2 [s] aj =

βj
β Keepin [21] T1/2 [s] aj =

βj
β Keepin [21]

1 55.600 0.0084 0.0080±0.0010 55.478 0.0103 0.0130±0.0010
2 24.500 0.1040 0.1040±0.0020 22.910 0.1148 0.1370±0.0020
3 16.300 0.0375 0.0380±0.0008 5.979 0.1278 0.1620±0.0200
4 5.210 0.1370 0.1370±0.0205 2.030 0.4518 0.3880±0.0120
5 2.370 0.2940 0.2940±0.0118 0.526 0.2335 0.2250±0.0130
6 1.040 0.1980 0.1980±0.0020 0.069 0.0617 0.0750±0.0050
7 0.424 0.1280 0.1280±0.0128
8 0.195 0.0931 0.0930±0.0372

a JEFF 3.1 b ENDF/B VII.0

fuel pin according to eq. (3.1). The results are shown in table 3.9 and 3.10 for the two data

libraries and time group structures. The final delayed neutron fraction averaged for the

mixture is 0.067 18 for the JEFF 3.1 library and hence about 1.8% higher than that of
235
92U for its own because of the 238

92U fast fission contribution. A similar ratio is observed

for ENDF/B VII.0.

Table 3.9: Physical delayed neutron fractions of the YALINA-Thermal fuel mixture and
the JEFF 3.1 library

β [%] βj [%]
1 2 3 4 5 6 7 8

235
92U 0.6600 0.0216 0.1016 0.0603 0.1300 0.2183 0.0596 0.0536 0.0151

238
92U 0.0118 0.0001 0.0012 0.0004 0.0016 0.0034 0.0023 0.0015 0.0011

Total 0.6718 0.0217 0.1028 0.0607 0.1316 0.2218 0.0619 0.0551 0.0162

Table 3.10: Physical delayed neutron fractions of the YALINA-Thermal fuel mixture and
the ENDF/B VII.0 library

β [%] βj [%]
1 2 3 4 5 6

235
92U 0.6457 0.0206 0.1074 0.1074 0.2968 0.0862 0.0305

238
92U 0.0110 0.0001 0.0013 0.0013 0.0050 0.0026 0.0007

Total 0.6567 0.0208 0.1087 0.1087 0.3017 0.0888 0.0312

With this approach, consistent sets of delayed neutron fractions and abundances are

derived from the underlying nuclear data libraries. With 2.3% the mixture averaged delayed

neutron fraction for JEFF 3.1 is slightly larger than the ENDF/B VII.0 fraction, which

corresponds to the mentioned 235
92U difference in the total delayed neutron fraction between
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JEFF 3.1 and ENDF/B VII.0. The relative abundances differ, however, significantly. The

influence of these differences on the calculations envisaged in this work is expected to be

rather small, because the response of the reactor to the neutron pulse is driven mainly by

prompt neutrons. The background of delayed neutrons establishes itself according to the

fission rate in a much longer time scale, so that only the absolute delayed neutron yield

will be important.

3.4.2 Fission Spectra for Direct Time-Dependent Methods

The time-independent Boltzmann equation includes the mixture averaged total neutron

yield as sum of the prompt and delayed neutron yields. Associated with the yield is the

energy spectrum of the fission or secondary neutrons. Principally, delayed neutrons have a

softer spectrum than prompt neutrons, e.g. for 235
92U the average emission energy of prompt

neutrons is about 2MeV, whereas for delayed neutrons it is about 0.43MeV [21]. Thus, a

steady-state fission spectrum includes all spectra weighted by the neutron production rate

of the particular prompt or delayed neutrons. On the other hand, transient calculations

with direct time-dependent methods require mixture averaged prompt and delayed neutron

time group specific spectra separately.

The module CHICOR [104] has been extended to calculate the mixture averaged steady-

state fission spectrum and the averaged prompt and delayed neutron spectra. The governing

equation is still that given by Broeders [73], but modified to include the delayed part [23].

The resulting equation (3.4) sums up a term very similar to the fission source of the

transport equation for every isotope i, while considering the emission of prompt and delayed

neutrons into the energy group g due to a fission reaction in energy group g′. In this

equation the energy dependence of each variable is considered and weighted with the

problem dependent flux. Thus, the resulting quantities are consistent with the delayed

neutron fraction calculation of section 3.4.1.

Commonly, the prompt fission spectrum of a nuclide is used independent of the incident

neutron energy. This is justified by the fact that the spectrum is constant below a certain

incident neutron energy. Above this energy the spectrum depends on the energy and NJOY

provides the full fission matrix in this context. Module CHICOR can handle the fission

matrix stored in the KANEXT library, which gives a "scatter" like distribution χipg′g of fission

neutron emissions due to fission in group g′ and fission neutron emission into group g. This

distribution is normalized to unity per incident energy group. If the standard incident-

energy-independent prompt neutron energy spectrum is to be used instead, the mentioned

distribution reduces to χipg. The resulting fission source is normalized to the total neutron
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production giving the average steady-state fission spectrum χss of a mixture.

χss
g =

∑
i

∑
g′

(
νipg′ Σ

i
fg′ χ

i
pg′g φg′ +

∑
j
χijg ν

i
jg′ Σ

i
fg′ φg′

)

∑
i

∑
g

∑
g′

(
νipg′ Σ

i
fg′ φg′ +

∑
j
νijg′ Σ

i
fg′ φg′

) (3.4)

The corresponding prompt and delayed spectra (eqs. 3.5 and 3.6) are calculated by

considering only the relevant parts of equation 3.4.

χpg =

∑
i

∑
g′
νipg′ Σ

i
fg′ χ

i
pg′g φg′

∑
i

∑
g

∑
g′
νipg′ Σ

i
fg′ φg′

(3.5)

χjg =

∑
i

∑
g′
χijg ν

i
jg′ Σ

i
fg′ φg′

∑
i

∑
g

∑
g′
νijg′ Σ

i
fg′ φg′

(3.6)

When mixture averaged fission spectra are available, the more common notation [118] of the

steady-state fission spectrum (eq. 3.7) is usable with β being the physical delayed neutron

fraction of the mixture as described in section 3.4.1.

χss
g = (1− β)χpg +

∑

j

βjχjg (3.7)

The result of eq. (3.4) for the 350 group library averaged over 235
92U and 238

92U is plotted

in fig. 3.19. The influence of the delayed neutron fission spectra shows up below 1MeV and

increases towards lower energies. The discontinuous shape of the delayed spectra (fig. 3.20)

can be partially identified in the steady-state spectrum as in the case of the seventh delayed

time group above 10 keV. The JEFF 3.1 prompt fission spectra generally are cut at 10 eV,

leaving the space for the pure delayed neutron spectra. However, the magnitude of the

distribution values is too small to have noticeable impact on the calculation.

The calculation of the averaged delayed neutron spectra is redundant in case of JEFF 3.1,

since all fissionable nuclides exhibit the same spectra when the relative abundance is removed

by normalizing each spectrum to unity. In the ENDF/B VII.0 library each fissionable

nuclide has its particular delayed neutron spectrum for each time-group (family) and these

need to be averaged for 235
92U and 238

92U. Of course, the impact of 238
92U will be limited due

to the small fission probability in this case.

The sensitivity of the multiplication factor to changes in the fission spectrum cannot

generally be predicted, but the slight softening of the steady-state fission spectrum is not

expected to cause large differences compared to the pure prompt spectrum. The softening

itself can cause opposed effects. Namely, the increased emission of neutrons with lower

energies will positively affect the probability for a later fission, while the reduced emission
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Figure 3.19: Steady-state and prompt fission spectra averaged for the YALINA-Thermal
fuel with JEFF 3.1
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Figure 3.20: Delayed neutron spectra for the YALINA-Thermal fuel with JEFF 3.1
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of very fast neutrons decreases the fast fission in 238
92U.

The above presented equations are applied to the YALINA-Thermal pin cell in the

known configuration. The options listed in table 3.11 denote first the exclusive use of

the prompt fission spectrum of 235
92U, which is used as the initial guess in the first cell

calculation, second the use of the energy-independent prompt spectra averaged for 235
92U

and 238
92U, then the combined energy-independent prompt and delayed neutron spectra, and

last the energy-dependent prompt fission spectra together with the delayed fission spectra.

As expected the multiplication factors do not show a considerable sensitivity to the varied

input parameter, because 235
92U is the dominant fission isotope.

Table 3.11: Sensitivity of the multiplication factor on the fission spectrum processing

χp (23592U) χip χip + χid χipg′g + χd

B350aa 1.368 79 1.368 79 1.368 76 1.368 75
B350cb 1.369 36 1.369 36 1.369 33 1.369 33

a JEFF 3.1 b ENDF/B VII.0

3.5 Validation on YALINA-Thermal Core Level

The numerical solution of the transport equation is computationally demanding. It is

worthwhile to investigate the impact of the approximations involved, in order to assure that

the resulting accuracy is sufficient for the parameters focused on and the performance is in

line with the desired accuracy. This is even more important, when we switch from the static

transport solution to the time-dependent solution which was understood in section 2.3 to

be a continuous repetition of a modified but complete fixed source problem. The resulting

model of this optimization study will be used to simulate parts of the YALINA-Thermal

experiment in chapter 5 and to validate the developments with experimental measurements.

The following sections discuss the sophistication needed for the accurate description of

the YALINA-Thermal reactor depending on the various approximations that have to be

made. Thereby, the coarse energy group structure is discussed in section 3.5.1 and the

approximation of the flux and scattering anisotropy in section 3.5.2 for the homogeneous,

source-free YALINA-Thermal reactor and in section 3.5.3 for the inhomogeneous case.

The multigroup discrete ordinates transport equation is solved for the YALINA-Thermal

core by the codes TORT v3.2a [2] and PARTISN v5.97 [63]. The TORT code serves as the basis of

the time-dependent solver introduced in chapter 4. In order to use the standard TORT code

in modern computing environments the source files need to undergo some modifications

concerning the memory allocation. PARTISN is compiled as delivered by the Radiation Safety

Information Computational Center (RSICC).

All static and later-on time-dependent deterministic core calculations share the same
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geometric model and meshing and the associated transport cross sections. The details of

the YALINA-Thermal reactor and its modeling are described in Appendix A.

The summary of the core calculation setup is:

• The calculation is carried out for the YALINA-Thermal configuration with 280 fuel

pins

• The reactor is subdivided into 84× 83× 26 mesh intervals in the x-, y-, z-direction,

respectively; the core region and several cm of the surrounding reflector use a fine

mesh with a radial mesh interval smaller than or equal to 2 cm; all other mesh intervals

are not larger than 5 cm

• For 17 regions cross sections are calculated with the KANEXT code system and the

new developed JEFF 3.1 master library; the new developed KANEXT interface module

CRGIP [119] (see also Appendix B.2.4) and the standard interface module TRANSX [120]

deliver the cross sections to TORT and PARTISN, respectively

• The same level symmetric Gauss-Legendre quadrature is used for all discrete ordinates

transport codes provided by the subroutine tsncon3d of the PARTISN code

• The main convergence criteria on the eigenvalue or the multiplicity ε{keff ,M}, on the

point-wise flux εψg and on the fission source εfiss are tightly set to 10−6

In the following comparisons energy group integrated scalar fluxes and their relative

differences to reference cases are compared for varying approximation orders. The formulas

used are:

φ̄(r) =

∫
φ(r, E) dE (3.8)

∆φ̄rel(r) =

∣∣φ̄(r)− φ̄ref(r)
∣∣

φ̄ref(r)
(3.9)

〈
∆φ̄rel

〉
=

1

Vtot

∫

Vtot
r∈Vtot

∆φ̄rel(r) dV (3.10)

φ̄reg =

∫

Vreg

r∈Vreg

φ̄(r) dV (3.11)

∆φ̄rel
reg =

∣∣φ̄reg − φ̄ref
reg

∣∣
φ̄ref

reg

(3.12)

By eq. (3.8) the local total flux is given, which enables flux comparison regardless of

the neutron energy group structure, whereas the region integrated total flux eq. (3.11)
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Table 3.12: Optimized 27 coarse energy group structure for the YALINA-Thermal analysis

Group Emax [MeV] Group Emax [eV]

1 19.640 11 9118.000
2 14.550 12 1498.500
3 13.840 13 148.728
4 12.840 14 27.700
5 3.679 15 9.877
6 3.166 16 4.000
7 2.019 17 3.300
8 1.353 18 1.150
9 0.500 19 0.850

10 0.067 20 0.400
21 0.140
22 0.080
23 0.050
24 0.035
25 0.020
26 0.010
27 0.005

establishes a global view on the accuracy. The mentioned integrations are carried out by a

self-made utility program, which reads either VARSCL or FLXMOM [2] formatted binary files

in case of TORT or RTFLUX or RMFLUX formatted files of PARTISN [63].

3.5.1 Impact of the Coarse Group Structure

For the full core calculation a suitable coarse energy group cross section set must be

available that reduces significantly the time of the full transport solution in view of the

envisaged repetitive solution of one fixed source problem per time step. However, the coarse

group structure must be capable of including potential spectral effects. The result of an

optimization study for YALINA-Thermal yields a 27 energy group structure with the energy

group boundaries listed in table 3.12.

It comprises relatively fine energy intervals at about 14MeV for the (d,t) neutron

source and at about 2.5MeV for the (d,d) neutron source used in the YALINA-Thermal

experiments. Below 3MeV several groups are dedicated to establish the fission spectrum

and the slowing-down of the neutrons to the thermal energy range. Further 13 energy

groups are defined to describe the detailed thermal neutron interaction below 10 eV which

is especially important for the huge amount of graphite and PE. The importance of the

thermal groups is underlined by the fact that for certain incident energy groups upscattering

occurs over a maximum range of 8 groups. In order to achieve a deterministic reference

case the homogenized cross sections are collapsed from the 350 energy groups structure

of the master library to the modified 69 energy groups WIMS structure. The results of a
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Table 3.13: Impact of the neutron energy discretization on the effective multiplication factor
of the full core calculation as obtained with TORT

Approximation 69g 27g ∆k [pcm]

S8P1 0.959 09 0.962 22 313
S8P2 0.961 22 0.963 63 241
S16P5 0.960 31 0.962 73 242

parameter variation in view of the quadrature and scattering Legendre order are presented

for the reference and the cross sections collapsed to the coarse group structure in table 3.13.

The effective multiplication factors are listed either with the S8P1 or the S8P2 approxi-

mation, but also with the very demanding S16P5 approximation, which serves as reference

for the lower order cases. The coarser group structure increases the eigenvalue by about

300 pcm for the P1 approximation. With the S8P2 approximation the results for both energy

group structures slightly increase. The results of the reference approximation orders are

however in between. For the higher orders the differences between the two group structures

reduce to about 240 pcm. The sensitivity of the multiplication factor on the two energy

group structures is found to be acceptable.

Talamo reported independently a multiplication factor 0.959 00(8) for the YALINA-

Thermal reactor with 280 fuel pins using MCNPX v2.6f with JEFF 3.1 continuous energy

cross sections [121]. The deterministic results are in this sense confirmed and deviate in

case of the 27 energy group structure between 322 pcm and 463pcm for the S8P1 and S8P2,

respectively. The results for the 69 energy group structure are nearby the MC result.

The detailed investigation of the impact of the group structure is presented in table 3.14.

The table shows the relative differences of the region-integrated total flux of eq. (3.12) for

variations of the approximation orders and the group structures. The detailed listing of

the regions is available in table A.1 of the appendix. To mention the most important ones,

region 14 is the whole fuel volume, whereas region 4 represents the whole graphite reflector.

Region 5 is simply the cumulated air. The smallest region 16 denotes the copper target of

the fusion neutron source admixed with either 2
1H or 3

1H. As reference the very demanding

solution of the S16P5 approximation has been used together with cross sections collapsed

to the extended 69 energy group structure (compare section 3.2). Comparing the S8P1

solutions for both energy groups with respect to the reference solution the differences are

most times lower than 1% with only few exceptions. Comparing the S8P2 solutions in the

same manner the differences decrease noticeably with 69 energy groups. However this effect

originates from the higher scattering order, since it is not observed for the S8P1 case. The

section hereafter will handle this topic in more detail.

Thus, the comparison of the eigenvalues and the region-integrated total flux indicate that

the coarse energy group structure is properly constructed and is a valid energy discretization
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Table 3.14: Relative difference of the region integrated total flux with respect to the
approximation order used with 69 energy groups

Region Volume [cm3] ∆φ̄rel
reg (ref: (S16P5)69g) [%]

(S8P1)27g (S8P2)27g (S8P1)69g (S8P2)69g

1 5731.2 0.979 0.730 1.021 0.009
2 10 054.8 1.788 0.293 1.816 0.070
3 984.8 0.569 0.040 0.597 0.051
4 1 119 096.0 0.777 0.310 0.823 0.059
5 45 060.9 0.688 0.272 0.724 0.039
6 1680.0 1.260 0.475 1.271 0.094
7 3686.4 0.903 0.336 0.940 0.077
8 7372.8 0.955 0.517 0.993 0.009
9 8524.8 0.742 0.329 0.774 0.002

10 3472.0 0.860 0.080 0.875 0.026
11 3686.4 0.968 0.613 1.006 0.016
12 779.0 0.211 0.586 0.226 0.056
13 1227.7 0.066 0.435 0.064 0.056
14 56 000.0 0.251 0.195 0.248 0.063
15 560.1 0.413 0.532 0.432 0.027
16 2.9 0.073 0.859 0.082 0.058
17 5040.0 0.968 0.376 1.006 0.070

for the full core calculation.

3.5.2 Impact of the SN Quadrature and PL Scattering Expansion Order

The calculations carried out in this section use generally the coarse energy group cross

sections. The setup of the discrete ordinate calculations is the same as before except for

the specific variation of the quadrature and Legendre order.

At this occasion the multiplication factor calculations have been carried out additionally

with the PARTISN code. As listed in table 3.15 the eigenvalue difference between the codes

TORT and PARTISN is for the lowest orders of approximations about 320 pcm. Dependent on

the approximation orders this difference decreases for higher orders. This differences are

however not expected since the cross section sets are identical as are the quadrature set

and the geometric model and meshing.

It is also seen that the impact of the Legendre order on the eigenvalue is stronger than

the already sophisticated S8 quadrature order. For Legendre orders higher than P3 a large

quadrature order as of S16 is needed to make the eigenvalue in line with lower order results.

From fig. 3.11a of section 3.2.1.2 can be understood that a high Legendre order possibly

makes the angular dependence of the differential scattering cross section complicated. In

turn, a finer angular discretization is needed, in order to integrate the anisotropy of the

scattering source correctly [63]. The eigenvalues of the S12PL≥4 and S16PL≥4 tend to
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confirm the S8PL≤3 results.

Table 3.15: Impact of the SN quadrature and PL scattering expansion orders on the
criticality with 27 energy groups

Quadrature Legendre Eigenvalue ∆k [pcm]
order order TORT PARTISN

S8

P1 0.962 22 0.965 47 325
P2 0.963 63 0.960 60 −303
P3 0.963 48 0.960 44 −304
P4 0.956 83 0.955 79 −104
P5 0.956 84 0.955 79 −105

S12
P4 0.960 23
P5 0.959 90

S16
P4 0.962 73 0.960 48 −225
P5 0.962 73 0.960 47 −226

In the discussion about the necessity of higher order approximations in the transport

calculation we come back to table 3.14. In case of the 69 energy group structure the S8P2

approximation reduces noticeable the difference to the reference solution in all regions

in comparison to the S8P1 solution. Looking to the results for the 27 energy groups the

differences are not reduced as much as before and for some of the small regions the difference

even increases. Thus, the advantage of a high order approximation is not obvious at this

point. This impression is confirmed by looking at the impact of the approximation order

on the total flux at the detector positions in table 3.16. The total flux is now integrated

over the mesh belonging to the detector volume as described in Appendix A.3.4. For all

detector positions within the fuel region (EC{1,2,3,4}) the S8P1 solution agrees somewhat

better, for the detectors in the graphite reflector (EC{5,6,7}) the S8P2 approximation

has a slightly better agreement with the S16P5 reference. The latter observation may be

explained by the complicated anisotropic scattering behavior of graphite. However, it was

shown in section 3.2.1.2 that even very high Legendre orders cannot cover consistently the

angular distribution in certain cases. Consequently, the S8P2 approximation may change

the scattering in the reflector, but this change is not necessarily an improvement.

Concluding this section it is discovered that key quantities like the multiplication factor

or region-integrated and detector-volume-integrated total flux of the coarse energy group

core calculation are not likely to be significantly improved over the S8P1 solution with

higher approximation orders of the quadrature or scattering.

3.5.3 Main Parameters of the Heterogeneous Core Calculation

Deterministic codes like TORT and PARTISN deliver as integral result of the fixed source calcu-

lation the multiplicity M . In the ADS analysis typically the so called source multiplication
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Table 3.16: Maximum and average relative difference of the cell-wise integrated total flux
with respect to S16P5 solution with 27 energy groups

S8P1 S8P2

Detector ∆φ̄rel
max(r) (i, j, k)max

〈
∆φ̄rel

〉
EC

∆φ̄rel
max(r) (i, j, k)max

〈
∆φ̄rel

〉
EC

EC1 0.326 (29,41,16) 0.092 0.357 (32,41,12) 0.106
EC2 0.306 (20,17,11) 0.235 0.304 (20,17,12) 0.234
EC3 0.177 (48,16,08) 0.099 0.287 (48,16,12) 0.208
EC4 1.235 (33,30,01) 0.636 1.258 (32,29,01) 0.424
EC5 1.436 (13,28,01) 0.683 1.135 (13,30,01) 0.138
EC6 0.957 (51,49,16) 0.765 0.804 (51,48,20) 0.202
EC7 0.847 (53,27,12) 0.665 0.278 (53,27,12) 0.141

factor ksrc ("k source") is preferred and the relation to the multiplicity is shown in eq. (3.13).

The multiplicity is interpreted as, how many times neutrons from one fission chain lead to

fission before the chain dies away. Since the reactor is subcritical, the multiplicity is finite.

M =
1

1− ksrc
(3.13)

The ksrc concept introduces the physical meaning of the homogeneous eigenvalue ("pro-

duction over losses") to the inhomogeneous problem. Compared to the homogeneous

eigenvalue it reflects the impact of the position and spectrum of the external neutron source

on the integral production and leakage and leads dependent on the source to a value smaller

or larger than the homogeneous eigenvalue.

The impact of the neutron source energy for the (d,t) and (d,d) reaction is explored with

an isotropic source in the second and sixth energy group of the 27 energy group structure

(see table 3.12) corresponding to the emission energy of the (d,t) and (d,d) neutron source.

These calculations have been prepared again for TORT and PARTISN with the known setup.

However, severe convergence problems are observed for the PARTISN code, which may be

related to general problems with the diffusion-synthetic-acceleration scheme as reported

by Azmy [122] for very heterogeneous geometries with large density fluctuations between

neighboring cells. This is the case for the modeling of the beam tube. The tube is directly

integrated in the geometric core model, which causes very fine spatial intervals at the core

center (see fig. A.12). In case of the TORT code the convergence is monotonically reached

and the multiplicity M is delivered.

As shown in table 3.17 the ksrc of the (d,t) neutron source case is almost identical to

the homogeneous eigenvalue, while the (d,d) source increases the ksrc to be significantly

larger by about 721 pcm. This effect of the neutron sources is attributed to two main

reasons. First, the very fast neutrons are more likely to leak out of the system, since their

mean free path is much larger than that of the (d,d) source neutrons. Second, the (d,d)

source neutrons are emitted near the average fission neutron energy of 2MeV and have an
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importance for the chain reaction comparable to that of the fission neutrons. Contrarily, the

(d,t) source neutrons have first to slow down from 14.1MeV to 2.5MeV in order to appear

at fission neutron energies and during this process they undergo reactions like absorption

or leave the reactor system. As opposed effect, the (n,xn) reactions, mainly (n,2n), occur

at higher neutron energies, and sustain the neutron production of the balance equation.

The results indicate however that the leakage and absorption are dominant on the ksrc of

the (d,t) neutrons source solution.

Table 3.17: Impact of the external neutron source type on the source multiplication factor
using TORT with 27 energy groups and the S8P1 approximation

Source type Ē [MeV] keff M ksrc

(d,d) 2.5 0.962 22 32.718 0.969 44
(d,t) 14.1 0.962 22 25.483 0.960 76

The source multiplication factors have been evaluated by Talamo [121] with MCNPX v2.6b

using ENDF/B VI.6 continuous energy cross sections for both sources. The ksrc is reported

to be 0.968 48 for the (d,d) case and 0.955 05 for the (d,t) case. Unfortunately, both results

are given without standard deviation. With this reservation it is concluded that the coarse

energy group structure is suitably defined for the simulation of the YALINA-Thermal

reactor operating with (d,d) neutron source. This is especially important, because the

YALINA-Thermal experimental data is only available for the (d,d) neutron source and

therefore used extensively in the next two chapters.

The larger difference of 570 pcm for the (d,t) neutron source is probably only for a small

part related to the different JEFF 3.1 and ENDF/B VI.6 cross section evaluations. It

may indicate a problem with the 27 energy group structure. The energy interval of the

fourth group amounts to 9.161MeV. For a (d,t) neutron source calculation the impact of a

refinement would have to be carried out. In view of the (d,d) source related next chapters

the achieved coarse energy group structure is certainly appropriate.

3.6 Point Kinetic Parameters for the YALINA-Thermal

Reactor

The effective delayed neutron fraction βeff and the mean neutron generation time Λ of the

point kinetic parameters are calculated with the classical approach for critical reactors

according to equations (2.36) and (2.38). The TORT discrete ordinates transport code in

the mentioned setup and the JEFF 3.1 27 energy group structure are used to provide the

real and adjoint flux of the static homogeneous effective multiplication factor equations

(2.10) and (2.19).
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Table 3.18: Effective delayed neutron fraction of YALINA-Thermal with 280 fuel rods and
27 energy groups TORT calculation

βeff [%] βeffj [%]
Total 1 2 3 4 5 6 7 8

0.7553 0.0217 0.1185 0.0670 0.1503 0.2488 0.0692 0.0618 0.0181

Table 3.19: Mean neutron generation time of YALINA-Thermal with 280 fuel rods and 27
energy groups TORT calculation

Region XS set Volume [cm3] Λ [·10−5 s] Fraction Description

1 5 961 444.8 1.620 0.20 Graphite reflector
3 23 22 261.4 0.137 0.02 Air
6 20 3686.4 0.077 0.01 Flux channel: PE
7 21 7372.8 0.140 0.02 Flux channel: PE, Air
8 19 8524.8 0.260 0.03 Pin without fuel

10 22 3686.4 0.062 0.01 Flux channel: Air
12 10 1227.7 0.067 0.01 Lead
13 11 56 000.0 5.682 0.70 Fuel

Total 1 085 760.0 8.134 1.00

The multigroup form of the point kinetic parameter equations is used in the module

KSAUDI to which the real and adjoint flux are delivered (see Appendix B.2.6).

The effective delayed neutron fraction yields in total 0.7553%, which is an increase

of 12.4% compared to the physical delayed neutron fraction of the fuel investigation of

section 3.4.1. The fractions of the time-groups are listed in table 3.18

The mean neutron generation time is determined for the most important material zones

and as sum of these. The total mean generation time of 81.3 µs is composed of 70% fuel

unit cell region contribution and of 20% reflector contribution. The remaining percentage

is distributed mainly over regions containing amounts of PE.
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Chapter 4

Development of a New External Source

Capability in a Time-Dependent

Transport Code
The fully implicit time integration scheme (see 2.3) was implemented under the name

DORT-TD into the two-dimensional discrete ordinates transport code DORT [123] of the DOORS

family of transport codes by Pautz [65] in the year 2003. The implementation is related to

the homogeneous form of the transport equation, however the validity of the method for

external source problems is also addressed there, if the external neutron source is included

correctly to the modified source term as described in section 2.3. On this basis the time

integration was implemented in the three-dimensional transport code TORT of the same

origin by Seubert [64] in 2005. Both codes are currently maintained and further developed.

DORT-TD and TORT-TD are applied as reference time-dependent neutron physics solutions

for reactor dynamics in the German Technical Safety Organization (TSO) GRS. The

continuous development and application allows to consider the codes to be thoroughly

validated for time-dependent problems, whereas the static codes DORT and TORT have been

applied for many years and thus are presumed to be validated even more. This approved

validated code environment has motivated the choice of TORT-TD in the current thesis.

The author of this thesis initiated therefore a substantial cooperation with GRS to

make the external source capability available in TORT-TD and moreover to investigate the

additional needs and the correct usage for the PNS experiments and ADS application.

The first part was accomplished by Seubert [124] and is briefly summarized in section 4.1

and section 4.2. The new development of the spherical harmonics representation of the

external neutron source is addressed in section 4.3. In section 4.4 an improvement of the

time-integrated transport equation is discussed to consider spectral effects on the delayed

neutron yield for PNS and ADS applications.

4.1 TORT-TD: Methods and Capabilities

In the time-dependent loop TORT-TD will solve eq. (2.59) with the discrete ordinates approx-

imation of the solid angle. This implies that the continuous solid angle Ω is discretized

into several rays Ωu of direction u. The discretization is used in combination with a

quadrature integration scheme to achieve e.g. the total flux. A typical quadrature set is the
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level-symmetric Gauss-Legendre quadrature [19].

φg =
1

2

∑

u

wu ψg(Ωu) with
∑

u

wu = 2 (4.1)

The final time-dependent discrete ordinates transport equation is written in the form of

eq. (4.2).

[
Ωu · ∇+ Σ̃g(r)

]
ψtτ+1
g (r,Ωu) = Stτ+1

g (r,Ωu) (4.2)

The entire source term located at the right-hand side is now abbreviated by the variable

S. The intention is to separate the left-hand side, which will be described in the discrete

ordinates representation in TORT/TORT-TD, and the spherical harmonics form of the source

equation (4.3). This representation is in agreement with the form used by the author of

this work [125] and will be extended by the source term of the external neutron source in

section 4.3. Using this representation all integrals are converted into sums. For brevity all

variables without time step indicator are thought to be of the time step tτ+1.

Stτ+1
g (r,Ωu) =

L∑

l=0

l∑

m=−l
Y m
l (Ωu)

G∑

g′=1

Σm
sg′gl(r)φmg′l(r)

︸ ︷︷ ︸
Scattering source

+ χ̃g
∑

g′
νΣfg′(r)φg′0(r)

︸ ︷︷ ︸
Prompt fission source

+
1

∆t

∑

j

χgjλjγjC
tτ
j (r)

︸ ︷︷ ︸
Delayed neutron source

+
1

vg ∆t

L∑

l=0

l∑

m=−l
Y m
l (Ωu) tτφmgl(r)

︸ ︷︷ ︸
Time source

(4.3)

The prompt fission and delayed neutron source terms cause no problem in terms of

numerical complexity, since they are isotropically distributed and may be generated by the

zeroth flux moment φg′0.

For the scattering source term the anisotropic flux has to be expanded in terms of the

spherical harmonics function Y m
l to the needed scattering Legendre order L of eq. (4.4).

If this expansion was carried out without much loss in accuracy, then the scattering

contribution from other directions can be simply mapped on the actual direction. The

more the flux is subject to distinct anisotropy the higher the order must be to obtain an

accurate spherical harmonics representation of the discrete ordinates angular flux.

φmgl(r) =
∑

u

wuY
m
l (Ωu)ψg(r,Ωu) (4.4)

The time source term of eq. (4.3) must be considered under this perspective as well.
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Pautz [65] reports that the conversion of eq. (4.4) generally leads to an unstable numerical

behavior e.g. a disturbance of the presumably constant total power in steady-state transients.

Thus, the time source must be added directly in the discrete ordinates sweep of the inner

iteration, in order not to loose the anisotropic structure of the flux and not to add numerical

noise to the source term.

Since homogeneous and inhomogeneous problems will be treated as modified fixed source

problems in the time-dependent calculation, acceleration methods were investigated and

implemented in these codes to optimize as much as possible the numerical burden per time

step i.e. per fixed source iteration.

In the following a summary of properties of the DORT and TORT codes collected from [2,123]

is given.

• Multigroup solution for homogeneous and inhomogeneous transport problems

• Cartesian coordinates in 2-D (xy, rz, rθ) and 3-D (xyz, rθz)

• Arbitrary discrete ordinates quadrature order N and Legendre scattering order L

(SNPL)

• Typical inner/outer iteration scheme

• Outer iteration accelerated by error mode extrapolation, fission rescaling method and

upscattering rebalance method

• Inner iteration accelerated by the coarse mesh rebalance method

Additional features of TORT-TD [64, 65] are:

• The time source is handled in the angular representation and not in the spherical

harmonics form of the right-hand side of the discrete ordinates transport equation,

which results in the demanding storage of the angular flux

• Acceleration by a flux extrapolation method using a "reactor period"-like exponential

for the flux guess of the next time step

• Acceleration of the upscatter convergence with an improved upscatter loop

• Acceleration of the fission source by Chebyshev extrapolation

• Material-wise prompt and delayed fission spectra and neutron group velocities

The development of TORT-TD has also afforded a comprehensive tool collection called

PreDOORS [126], which produces the geometry input of the TORT code part on the basis

of a generalized input description. The semi-automatic input production comprises also
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the generation of the quadrature set, the cross section handling and also the mapping of

thermo-hydraulic properties on the neutron physics area for coupled calculations. In the

kinetics part of the TORT-TD input the kinetic data i.e. decay constants, delayed neutron

fractions and prompt and delayed neutron spectra must be given.

4.2 Implementation of the Time-Dependent Source

Capability

The classical understanding of the transport equation is that the loss rate balances the

production rate as outlined in chapter 2.1 and loss and production are distinguished by

the placement on the left or right-hand side of the equation, respectively. Numerically,

the left and right-hand side of the discrete ordinates transport equation are distinguished

by the mathematical treatment. While the production or total source on the right-hand

side is represented by means of the spherical harmonics of eq. (4.3) and moreover is part

of the outer iteration, the left-hand side is situated in the inner iteration or transport

sweep within the discrete ordinates frame. Thus, each quantity can be located at the

mathematically most suitable place. E.g. the anisotropic scattering treatment makes use

of the advantageous properties of the orthogonal Legendre functions, which are the polar

angle subset of the spherical harmonics functions. Since for most problems a truncated

expansion of order L ≤ 3 is sufficient to describe the scattering anisotropy, the placement

of the scattering source is most efficiently handled on the right-hand side of the transport

equation. All kinds of fission sources are even more easily to account for, because they are

constructed by the scalar flux, the equivalent to the zeroth flux moment.

There is little information in the literature on the usage of external neutron volume

sources with distinct anisotropy in deterministic code systems. As outlined the source could

be added in the discrete ordinates form or in the spherical harmonics representation. The

mathematically uniform approach found in all transport codes like TORT, DORT but also

PARTISN is to apply the volume source in the spherical harmonics form [2,63]. In TORT-TD

the external neutron source Q is implemented according to eq. (2.60) and eq. (4.2) in the

spherical harmonics frame having followed the interpretation as a neutron production term.

In the original TORT code the fixed source can be given in several ways. Either in

the text input file, if only the spatial and energy distribution is to be defined, or in a

binary data file that is conform to the FLXMOM format [2]. The latter obviously allows for

higher spherical harmonics orders than the zeroth which aims at the anisotropy of the

neutron distribution. However, the time-dependent volume source in TORT-TD has been

implemented by Seubert [124] in a TORT-TD specific subroutine called timsr{1,2}. The

energy-angle-time-dependent external neutron source is given in the spherical harmonics

frame in eq. (4.5) and added together with the time source and delayed neutron source
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terms to the total source of eq. (4.3). For a certain position and energy group the source is

composed of a global intensity I defined in the TORT-TD input and the spherical harmonics

coefficients of the external source Qmgl eventually interpolated (therefore Q̄) to the global

time regime and given for the necessary time steps in an additional source related text input

file. The provision of the Qmgl is developed by the author of the thesis [125] and extensively

discussed in the next section 4.3.

Qg(r,Ωu, tτ+1) = I
L∑

l=0

l∑

m=−l
Y m
l (Ωu) Q̄mgl(r, tτ+1) (4.5)

4.3 On the Use of an Energy-Angle Dependent Neutron Source

in Deterministic Transport Codes

4.3.1 Characterization of the (d,d) and (d,t) Fusion Neutron Sources

In the YALINA-Thermal experiments both kinds of fusion neutron sources (d,d) and

(d,t) were applied. The author of this thesis developed the derivation of the energy-angle

dependent neutron source in terms of the spherical harmonics functions [125]. Since the

spherical harmonics representation appears to be the usual treatment of the production rate

in deterministic transport codes, this method was applied because of its generality. The cited

work describes the application to the (d,t) neutron source. This section summarizes briefly

the method and results for the (d,t) neutron source and continues with the application to

the (d,d) neutron source, for which solely experimental results are available.

The angular distributions of source neutrons originating from (d,d) or (d,t) neutron

sources and a deuteron beam energy of 0.25MeV are shown in fig. 4.1 provided by the

DROSG-2000 code [127]. The horizontal 0° line is thought to run parallel to and in direction

of the deuteron beam and thus parallel to and in the negative direction of the z-axis of

the YALINA-Thermal model of fig. A.2. The plot contains the dependence of the neutron

emission on the polar angle θ in form of a differential cross section in unit barn normalized

to the maximum of the (d,t) and (d,d) cross section, 155.814mb and 6.965mb, respectively.

It underlines that the treatment of the (d,t) neutron source as completely isotropic is a

valid approximation and can reduce the numerical effort significantly. The (d,d) source

exhibits a clear anisotropy in the way that neutrons are emitted most preferentially in

forward direction and significantly in backward direction but only with about 30% of the

0° probability perpendicular to the beam axis.

The same relationship is drawn in fig. 4.2 for the (d,t) source in a linear plot, but now in

connection with the energy dependence on the left-hand side. One may observe the direct

link between the emission angle and the emission energy of the neutron. The energy ranges

between 13.1MeV and 15.2MeV and the curvature is similar to the direction dependence.
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Figure 4.1: Distribution of source neutrons of 0.25MeV beam energy for the polar angle in
the laboratory system

Thus, neutrons with the highest energy are preferentially emitted in forward direction.

4.3.2 Development of a New Original Solution

The use of the energy-angle dependent neutron source in deterministic multigroup transport

codes requires the energy distribution to be discretized along with the multigroup structure

of the cross sections and the angular distribution to be converted to the mathematical

representation of the anisotropy. For discrete ordinates transport codes like PARTISN and

TORT this means the change in energy and angle of the neutron after a collision is described

with help of the spherical harmonics expansion.

Any continuous, square integrable function can be represented exactly in terms of

spherical harmonics with the expansion order l→∞ in eq. (4.6) [1, 128].

f(θ, φ) =

∞∑

l=0

l∑

m=−l
Qml Y

m
l (θ, φ) (4.6)

The real-valued spherical harmonics function Y of order l and moment m is defined in

eq. (4.7)

Y m
l =





√
2<(Y m

l ) =
√

2Nm
l cos(mφ)Pml (cos θ) if m > 0

Y 0
l = N0

l P
0
l (cos θ) if m = 0

√
2=(Y m

l ) =
√

2N
|m|
l sin(|m|φ)P

|m|
l (cos θ) if m < 0

(4.7)
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Figure 4.2: Dependency of emission energy and probability on polar angle θ of the (d,t)
neutron source

as product of the normalization factor N in eq. (4.8)

Nm
l =

√
2l + 1

4π

(l −m)!

(l +m)!
(4.8)

and the associated Legendre polynomial P in eq. (4.9)

Pml =
(−1)m

2l l!

√
(1− (cos θ)2)m

dl+m

d(cos θ)l+m
((cos θ)2 − 1)l (4.9)

as one of the many definitions of the real spherical harmonics [118]. Numerically, the

associated Legendre polynomials are calculated with help of the recurrence relation of

eq. (4.10) [128].

Pmm (x) = (−1)m (2m− 1)!!(1− x2)m/2

Pmm+1(x) = x (2m+ 1)Pmm (x)

(l −m)Pml (x) = x (2l − 1)Pml−1(x)− (l +m− 1)Pml−2(x)

(4.10)

When the energy discretization is fixed by the energy structure of the KANEXT 350 groups

library (see chapter 3 and section B.1.2), then the angle intervals are determined as well.

This is indicated by the dashed lines in fig. 4.2 and applied in table 4.1.

Consequently, function f is now a step function of each energy group in eq. (4.11).

fg(θ, φ) =





0 if θ < θg or θ > θg+1

f(θ, φ) if θg ≤ θ ≤ θg+1

(4.11)
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Table 4.1: Correlation of the master library fine energy structure and the angle intervals of
the neutron emission for the (d,t) source

g Eg Eg+1 θg θg+1

5 15.683 14.918 0.00 43.74
6 14.918 14.550 44.25 66.87
7 14.550 14.191 67.37 86.48
8 14.191 13.840 86.98 105.59
9 13.840 13.499 106.09 126.70

10 13.499 12.840 127.21 180.00

The mentioned transport codes expect the coefficient Qml for each energy group to be

determined after eq. (4.12). In the definition of eq. (4.12) cos θ is integrated from −1 to 1

corresponding to the integration from −180° to 0°.

Qmgl =

2π∫

φ=0

1∫

cos θ=−1

fg(θ, φ)Y m
l (θ, φ) d(cos θ) dφ (4.12)

This new procedure is implemented in the program MKSRC (section C.1.1). The procedure

and results obtained for the (d,t) neutron source [125] are outlined here in brevity. The

group-wise spherical harmonics coefficients are calculated after eq. (4.12) for a truncated

expansion order L with the integration limits of table 4.1 and the original data is afterward

reconstructed on the basis of eq. (4.6). Fig. 4.3 demonstrates that the subdivision of the

energy into a fine group scheme leads to step functions which can only approximate the

original data for a sufficiently large expansion order (fig. 4.3b). Since this expansion order is

not manageable for transport codes, the result of a realistic expansion order L = 5 is drawn

in fig. 4.3a. It may be observed that on top of the fact, that the original data can not be

reconstructed the truncated expansion would produce significant negative function values

and therefore would disturb the numerics leading potentially to negative flux occurrences.

In order to keep the anisotropy information but circumvent the step function characteristic

of the neutron source, the integration of the function in eq. (4.11) is carried out including

the complete emission range in energy and angle. As consequence the neutron source

emits neutrons mono-energetically. If this mono-energetic source is used in a transport

code, the multigroup cross sections have to provide exactly this energy interval, i.e. from

13.499MeV to 15.683MeV and from 2.015 87MeV to 3.121 51MeV for the (d,t) and (d,d)

source, respectively. As consequence the first expansion order does already approximate

satisfactorily the original data of the (d,t) neutron source (fig. 4.4a).

In case of the (d,d) neutron source the calculation of energy discretized spherical

harmonics coefficients is skipped for the reasons mentioned earlier. Instead, the one group

coefficient is determined directly and the reconstructed curve is plotted together with the

original data in fig. 4.4b. Unlike the (d,t) neutron source an expansion order of L = 2
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Figure 4.3: Spherical harmonics expansion of the (d,t) neutron source generated with
0.25MeV deuteron energy

is needed to regain the two inflection points. However, the curve of the first and last 30°

deviate apparently from the original data. A quite good agreement with the original curve

can be achieved for L ≥ 3.
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Figure 4.4: Spherical harmonics expansion of neutron sources with one energy group gener-
ated with 0.25MeV deuteron energy

This new developed procedure allows for the generation of the energy-angle dependent

neutron source in terms of the spherical harmonics expansion. Since this representation

is mostly used in deterministic transport codes, it is generally applicable. The strong

concentration of the neutron emission in forward and backward direction of the (d,d)

neutron source necessitates at least a third order expansion of the source for the mono-

energetic neutron distribution. The energy discretization in several fine groups leads to

step functions which demand a high order spherical harmonics expansion and is therefore
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not applicable in common deterministic transport codes.

4.3.3 Outlook for Future Work

The discrete ordinates transport code PARTISN uses a definition of the solid angle components

θ and φ, the polar and azimuthal angle, respectively, non-conform to that of the spherical

harmonics development in this work [125]. This characteristic has also been encountered in

TORT/TORT-TD. The rotational axis of the azimuthal angle is not the z-axis as assumed and

in consequence the anisotropy of the neutron emission may be found along the x-axis. In

further investigations spherical harmonics rotations could be a possibility to make use of

the source anisotropy in deterministic transport codes. The rotation of a L = 1 expansion

is easily accomplished by interchanging the Qm1 coefficients. Thus, a (d,t) neutron source

could be represented correctly in that sense. The rotation of higher order expansion is more

complicated and exceeds the scope of this work.

As an alternative, the development of the energy-angle dependent neutron source can

be thought in the discrete ordinates frame. After the reported results and drawback of the

spherical harmonics expansion the neutron source can be provided for all discrete directions

Ωu and energy groups.

4.4 On the Extension of the Time-Integrated Transport Equa-

tion for Spectral Effects on the Delayed Neutron Produc-

tion

In the following a possible extension of the time-dependent discrete ordinates transport

equation in the form of the combined equations (4.2) and (4.3) is presented.

ADS neutron sources release neutrons with energies considerably higher than fission

neutron energies in critical reactors. Situations may therefore arise in which quantities like

the physical delayed neutron fraction must be differently evaluated for the ADS or PNS

experiment in general, and with special interest for the time-dependence of the propagation

of the very fast source neutrons in the reactor. In the latter case delayed neutrons from

other fissionable nuclei than the main fissile nuclides may contribute to quantities of interest

while the thermalization is not yet finalized or no equilibrium in the neutron balance can

be achieved within reasonable time periods corresponding to reliable detector rates in a

subcritical reactor.

As an example serves the very basic and for this work relevant discussion of the UO2

fuel enriched in 235
92U. Whenever fast neutron energies are predominant concurrent fission

in 238
92U will occur. The fission reaction of 238

92U has a threshold of about 1MeV and the

comparison of the fission cross section of the 235
92U and 238

92U isotopes in fig. 4.5b shows that
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the probability of fission approaches quickly half the probability of fission in 235
92U. Since

238
92U has the largest delayed neutron yield of all fissile materials (fig. 4.5a), roughly a factor

of 4 compared to 235
92U in the lower MeV range, the delayed neutron production (νdΣf ) of

238
92U develops to the same order as 235

92U above the threshold energy. This extreme situation

is only imaginable in the very first µs of a PNS experiment, when the fission events are

mainly due to fast neutrons. Moreover, when several fissionable nuclei are involved like in

Mixed Oxide (MOX) fuel or special MA fuel, the composition of the yields will be more

complex and must be calculated for the actual condition.
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Figure 4.5: Delayed neutron yields and fission cross sections for 235
92U and 238

92U of the
JEFF 3.1 evaluation

The inclusion of spectral effects in TORT-TD concerns all locations, where the constant

delayed neutron fraction β appears in the implementation of the time-integrated transport

equation. The straight-forward manner is to consider the energy-dependence of the delayed

neutron yields directly in the precursor equation. That is to say that the former precursor

equation (2.61) of the implicit time integration scheme is rewritten to equation (4.13).

C
tτ+1

j (r) = γj

[ 1

∆t
Ctτj (r) + ∆t

∑

g′
νjgΣfg′(r)φ

tτ+1

g′ (r)
]

(4.13)

The additional term of the back-substitution of the precursor concentration, which is

organized in the modified fission source χ̃g
∑
g′
νtΣfg′(r)φ

tτ+1

g′ (r) of equation (2.59) changes

to equation (4.14).

χpg

∑

g′
νpg′Σfg′(r)φ

tτ+1

g′ (r) +
∑

j

χjgλjγj
∑

g′
νjg′Σfg′ φ

tτ+1

g′ (r) (4.14)

The new form of the implicit time-integrated transport equation accounts for the spectral

influence by applying the energy dependent precursor yield rather than the constant delayed

neutron fraction. In the written form it does not fit so well to the textbook-like style
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of the fixed source equation, the implementation however is smooth and on top of the

modifications necessary to implement the time integration.
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Chapter 5

Results of the YALINA-Thermal (d,d)

Pulsed Neutron Source (PNS)

Experiment Simulation
The TORT-TD code in the version RTZ-0.5 is used to simulate the (d,d) PNS experiments

with 280 and 216 fuel rods. In the next section 5.1 the TORT-TD specific program setup is

described, which is used to get the simulation results of section 5.2. This is followed by

the discussion of two aspects of the simulation in section 5.3, namely the difference of the

measured and calculated detector rates in the first µs and the change of the neutron current

spectrum at the core boundary with time. Finally, the impact of the advanced simulation

capability on the calculation of kinetic parameters is assessed in section 5.4.

5.1 TORT-TD Model and Configuration

The time-dependent calculation is based on the TORT geometry model of the static calculation

(see section 3.5 and appendix A.5). The main simulation settings of TORT-TD are:

• Spatial discretization of the reactor in 83× 82× 25 mesh volumes

• JEFF 3.1 cross sections and 27 groups energy discretization with the structure

discussed in section 3.5.1

• Isotropic, mono-energetic (d,d) neutron source with triangular time shape; pulse

width of 5 µs and maximum source intensity at 2.5 µs

• Time discretization as tabulated in table 5.1

• Level symmetric Gauss-Legendre quadrature and scattering order: S8P1

• Static convergence criteria of zeroth time step εkeff
, εψg , εfiss ≤ 10−6

• Time-dependent error criteria on εM̃ , εψg , εfiss ≤ 10−6

• Prompt and delayed neutron spectra, delayed neutron precursor abundances and

decay constants of section 3.4

• The Chebyshev extrapolation instead of the standard error-mode extrapolation is

used to accelerate the convergence of the fission source
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Table 5.1: Time discretization of the TORT-TD YALINA-Thermal simulation

Time interval [s] Time step ∆t [s]

0.00 ≥ t < 10−5 5 · 10−7

10−5 ≥ t < 10−4 5 · 10−6

10−4 ≥ t < 10−3 5 · 10−5

10−3 ≥ t < 0.02 1 · 10−4

From the explanation of the principal processes in PNS experiments in section 2.2 it

is understood that the neutron distribution at the ending of a pulse period (here 20ms)

is the initial condition of the time-dependent simulation for the next pulse period. The

difficulty is therefore accentuated to provide the initial condition if the delayed neutron

background is part of the simulation.

Talamo has proposed the pulse super-imposition method [60] for the Monte-Carlo simu-

lation with delayed neutrons. The method is also applicable to deterministic solutions. The

procedure applied in this thesis differs in that a guess of the delayed neutron precursors and

the neutron distribution is delivered based on an effective multiplication factor calculation

followed by the determination of the equilibrium precursor concentration. The time interval

denoted T4 in fig. 2.1 may be interpreted as a constant fixed source problem with the

delayed neutron emission as a neutron source which initiates a finite fission chain causing the

emission of prompt neutrons. Since the precursors are distributed over the whole fuel region

and emit neutrons with a spectrum only slightly softer than the prompt fission spectrum

the constant neutron distribution contains a characteristic similar to the fundamental mode

distribution of neutrons. Thus, in the zeroth time step of the TORT-TD simulation the initial

condition for the time-dependent calculation is approximated by a keff eigenvalue solution

after which the equilibrium precursor concentration in every mesh volume is calculated.

This flux serves as initial flux guess with similar properties as the unknown flux at the end

of the pulse period.

In order to compare the simulation to the experimental results, a scale adaption is

generally required. With the external source strength given the absolute flux and every

other related quantity could be directly determined. Unfortunately, the (d,d) source was not

calibrated in the beginning of the experiment and the strength is therefore unknown. Since

the reactor operates at zero-power the power-to-flux normalization can be applied neither.

As a workaround the simulated delayed neutron background of EC2 is chosen to match

that of the experiment and the source strength is adjusted in TORT-TD to comply with the

situation at the beginning of the pulse. For all presented results only one normalization to

one detector location has been performed. It is however obvious that the local distribution

of the delayed neutron precursors depends strongly on the fission rate integrated over the

pulse periods, for which the guess may not be completely adequate.
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5.2 Simulation of the (d,d) Neutron Source Experiment

After the official end of the combined IAEA CRP "Analytical and Experimental Benchmark

Analysis on Accelerator Driven Systems" and "Low Enriched Uranium Fuel Utilization

in Accelerator Driven Systems" [42] a publication outlined that for the comparison of the

experimental data with time-dependent simulation the knowledge of the real fuel composition

is of importance [121]. According to this the simplified benchmark fuel definition of YALINA-

Thermal does not specify the content of 234
92U, which accumulates during the enrichment

process of 235
92U, and further fuel impurities. As a result of a gamma spectroscopy of all

280 fuel rods a 2.1% reduced uranium mass was found. The criticality impact of both, the

extended composition and reduced mass, adds up to nearly 1000pcm reported for a MC

calculation. Moreover, it is reported that for the detector EC2 measurement an additional

detector at EC3 was placed in the fuel region, while the reflector detectors were left empty.

In case of the EC5 detector measurement again EC6 contained the detector device, too.

The benchmark specification however demanded a detector device free simulation. The

reaction rates were calculated as sum of the group flux and detector cross section product

in a subsequent evaluation step. The impact of the presence of two detectors in the fuel

region was investigated [121] and quantified to a 480 pcm reduced criticality compared to

the detector free reactor.

Thus, between the benchmark specification and real reactor setup there exists a discrep-

ancy that amounts in a reduced criticality of about 1500pcm. For the time behavior of the

reactor discussed hereafter a steeper decay in terms of reaction rates is to be expected and

when comparing the time-dependent simulation results with the measurement this must be

carefully taken into account. The static calculations with the adjusted number densities for

the impurities and the reduced uranium mass are repeated with the few group structure

of 27 energy groups and the effective multiplication factors are listed in table 5.2. The

achieved difference of 1108pcm based on the deterministic calculation and the reported

difference agree well. Note that there is a small difference of 71 pcm between the TORT

multiplication factor of section 3.5 and the TORT-TD result.

Table 5.2: Integral results of TORT-TD with 27 energy groups and MCNPX for the modified
fuel composition

Case kTORT-TDeff kMCNPX
∗

eff

Benchmark specification 0.961 51 0.959 00(8)
234
92U and 2.1% mass reduction 0.950 43 0.949 61(4)

Difference [pcm] 1108 939
∗ From [121]
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Figure 5.1 shows the simulation results of TORT-TD for the case of the 280 fuel rods

configuration in comparison to the available experimental data for the (d,d) neutron source

and a pulse period of 20ms. The 3
2He(n,p) reaction rate is integrated over neutron energy

and detector volume for detector EC2 and EC5 for each time step (see fig. A.1). The rates

are plotted with semi-logarithmic scale and a coarse time abscissa in order to highlight

the correlation between the experimental result and the different levels of subcriticality

achieved by the benchmark and real fuel definition, which are not subject to other physical

or numerical aspects discussed in section 5.3. In the EC2 detector an immediate response

to the (d,d) neutron pulse in terms of the reaction rate is observed. The reaction rate then

diminishes continuously to the quasi-constant neutron background within about 8ms. The

reaction rate in the EC5 detector increases to a maximum value after 1ms and decays

within about 9ms to the delayed neutron background counted from the time point of the

maximum value. For both detectors the finding is true that the slope of the reaction rate

decay flattens as the criticality approaches unity. Only a slight tendency to decay faster

than the curves of the corrected reactor specification is observed for the measured rate.

The difference between the absolute values in EC5 amounts to about 30%, but the shape of

the corresponding normalized curve matches almost exactly the shape of the experimental

data over the whole period.
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Figure 5.1: Comparison of simulated and experimental 3
2He(n,p) reaction rates for the (d,d)

neutron source and 280 fuel rods configuration

The origin of the absolute difference was subject to a deeper investigation. As potential

reason for the absolute difference of the curves in EC5, a tighter spatial discretization in the

vicinity of the boundary to the reflector was investigated, but did not indicate a significant

relation to the problem. Other investigations related to the anisotropy of the (d,d) neutron

source have shown only a minor impact on the absolute values. Barbarino [129] investigated

the numerical distortion of time-dependent ray effects in time-dependent discrete ordinates
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transport codes. For low quadrature orders and low fraction of scattering, for which static

discrete ordinates transport codes are already known to fail, the ray effect develops to a time

component, since neutrons being forced to follow a discrete ray will reach different points

in space with their specific velocity. On the other hand the authors show that a "standard"

quadrature order S8 reduces the impact significantly. To consider also this potential reason,

a S12 calculation has been carried out and the comparison of the reaction rates yields a

difference below 3% in all detector positions in the first 1.5ms. After that period the

difference increases to a maximum of 10% at 6ms in EC1 and EC2 detectors. The impact

of the quadrature order is seen, but it is not the reason for the observed difference. The

reason for the difference cannot be explained satisfactorily from the numerical point of view.

Others have also encountered this problem [121,130]. It cannot be excluded however that

this problem is related to uncertainties in the experimental setup as already observed.

With the same TORT-TD numerical setup the reaction rates are calculated for the 216

fuel rods configuration of the YALINA-Thermal reactor and shown in fig. 5.2. Its static

criticality is determined to 0.877 17. The keff value is in good agreement with those of other

benchmark participants like Talamo [121]. Contrarily to the case above, the normalization

to the delayed neutron background is skipped, because it affords a series of recalculations

for the source strength adjustment. For the deep subcritical configuration a fast decay of

the reaction rate is noticed in the EC2 detector of fig. 5.2a. The decay of the reaction

rate is more linear in the logarithmic ordinate scale during the first 3.5ms than in the 280

fuel rods configuration and develops afterward a slight curvature. In the EC5 detector

location in fig. 5.2b again a build-up phase in the first ms is observed and followed by a less

steep decay to the delayed neutron background. The TORT-TD result shows again a good

agreement with the experimental data for the prompt decay phase of the experiment.
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Figure 5.2: Comparison of simulated and experimental 3
2He(n,p) reaction rates for the (d,d)

neutron source and 216 fuel rods configuration
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It was shown that a PNS experiment with a real reactor configuration as the YALINA-

Thermal experiment can be simulated with help of the TORT-TD code. With the knowledge of

certain deviations from the benchmark specifications a good agreement with the measured

data can be achieved in view of the slope and shape of the decaying reaction rates. It

is concluded that TORT-TD performs quite well on this kind of problem enabling detailed

investigations of the subcritical behavior of the reactor. Since the more general investigations

in the next sections do not depend on the real knowledge of the reactor configuration, the

benchmark configuration with the details described in section 3.5 and appendix A is used

hereafter.

5.3 Physical Observations

5.3.1 Short-Time Detector Characteristic Immediately after the Pulse

When looking at the immediate response in terms of reaction rates of the experiment and

simulation in fig. 5.3a a principal difference is noticed in that the simulation exhibits a

complex shape of the rate. The reaction rate raises very fast during source operation and

reduces continuously the slope after source shut-off indicated by the dashed line. After

75 µs the rate starts to diminish. On the other hand, the experimental data starts with

the maximum value and decays monotonously from the very beginning. After the first

time interval of 5 µs, which resembles the time resolution and thus comprising the complete

source operation, a discontinuous decrease of the rate is observed, after which the rate

diminishes more slowly.
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Figure 5.3: Comparison of simulated and experimental reaction rates for the (d,d) neutron
source and 280 fuel rods configuration during the first 100 µs

In order to identify this effect, the fission reaction rate integrated over the whole fuel
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Figure 5.4: Microscopic cross sections of 235
92U and 3
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region is plotted in fig. 5.3b. The fission rate follows exactly the triangular time shape of

the neutron source with the maximum source strength at 2.5 µs. After that it continuously

decreases. Thus, the effect looking at is different from the fission rate behavior and does

not explain the inertia of the 3
2He(n,p) reaction rate in EC2 directly. It is however observed

that the fission rate between 5 µs and 75 µs changes only by about 10%.

From the physical point of view it may be assumed that the moderation and thermaliza-

tion of neutrons in the reactor is not finalized. This means the time of travel and successive

collisions (which are immediate) will be noticeable in this time scale. From fig. 5.4 we

can deduce the consequence that the probability of a 3
2He(n,p) reaction increases towards

thermal energies practically with a 1
v shape and may therefore enhance the rate as integral

over flux and cross section competing with the general decay of the neutron population due

to the subcriticality of the reactor. This result has also been confirmed independently by

Talamo [121] and Persson [131] in a different setup of the YALINA-Thermal configuration

both using MC codes.

With this discussion it is emphasized again that the comparison between experiment and

simulation is not only complicated due to the choice for approximations and methods, but

obviously also by the uncertainties and limitations of the experimental setup in terms of the

materials and hardware involved. It was outlined before that the experimental specification

is not detailed enough. Some possible reasons for differences between experiment and

simulation can be guessed. The real detector is a device containing structure material like

copper and nickel. This means that the detector may shield to a certain extent neutrons

from the 3
2He-filled reaction chamber. On the other hand cables of the detector device can

contain carbon and hydrogen, so that local scattering/slowing-down effects may play a role.

Finally, the efficiency of the detector may generally be dependent on the neutron energy.
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5.3.2 Investigation of the Neutron Current at Core Boundary

The TORT-TD code has implemented a subroutine that provides the mesh-cell- and region-wise

leakages used to calculate diffusion coefficients of that region. This option allows also for the

definition of an arbitrary cube surface, for which the net neutron current J is delivered as

energy-group-wise and total vector quantity. In general notation the net current is defined

as the sum of the partial currents J+ and J− which point into direction of a normal vector

n on a surface either in positive or negative axis direction (eq. (5.1)-(5.3)) [19].

Jn(r,Ω, E, t) = J+
n (r,Ω, E, t)− J−n (r,Ω, E, t) (5.1)

J+
n =

∫

Ω·n>0

dΩn ·Ωψ(r,Ω, E, t) (5.2)

J−n =

∫

Ω·n<0

dΩ
∣∣n ·Ω

∣∣ψ(r,Ω, E, t) (5.3)

The leakage through a cube surface is given by TORT-TD for the six surfaces with their

directional sign and have been evaluated according to eq. (5.1). The cube dimensions and

position match the active zone of the YALINA-Thermal reactor. Thus, the leakage specifies

directly the net current between the fuel region and the reflector region.

Fig. 5.5 shows the net current through the surface between the active zone and the

reflector. The current is given energy-group-wise and divided by the width of the energy

group necessitating a logarithmic scale of the abscissa. The third dimension is the time of

the pulse period, which is also drawn with logarithmic scale. In the figure two data sets are

used, which had to be separated in order to enable the logarithmic representation. The red

colored data set denote the net neutron current, which leaves the fuel region and enters the

reflector region. The blue data set denote the opposite direction of the net current from

the reflector into the fuel region. At the data points, where a change of the sign occurs, the

data item is set to a very small number. Thus, the valleys between the curves of varying

colors represent the discontinuity of the zero crossing. The plot software applies at this

point an interpolation, which leads partially to fragmentary three-dimensional surfaces.

Additional to the uniform energy group ordinate, the upper energy boundary of certain

groups are given in the figure. When in the following a group number is used, say group 6,

we find the data in the interval between 6 and 7.

The simulation and the plot start at 0.5 µs with a time step width of 0.5 µs right after

the static keff calculation. The neutron source is immediately active with the maximum

intensity at 2.5 µs marked in the plot for group 6. Keeping in mind that neutrons have to

travel at least 20 cm in radial direction and 25 cm in axial direction from the center of the

core, the response is in majority immediate at the surface due to the large velocity of the
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Figure 5.5: Net neutron current between core and reflector decomposed in out- and inflow
for the (d,d) neutron source and 280 fuel rods configuration
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neutrons and the associated large mean free path. The source shut-off at 5 µs is indicated

also and the right-hand side of the triangular time shaped pulse causes a direct reduction

of even the 20th group current with only minor delay. Already in the final phase of the

source decrease at about 4 µs there is a turning point of net current in the groups 11 to 18,

which corresponds to the energy interval of 9.118 keV and 0.4 eV. The net current changes

its direction. More neutrons enter the fuel region through the surface than leave into the

reflector for these energy groups. This situation continues till about 50 µs after which the

net current stabilizes to be the net streaming from the fuel region into the reflector again.

The interpretation of this observation is, that, during the time the source is operating in

the subcritical reactor, a net streaming from the fuel region into the reflector is obvious

due to the flux gradient at the boundary. When the source operation terminates, the

neutron production due to fission will decrease like e.g. in fig. 5.3b. According to the

multiplication factor and the mean generation time evaluated in section 3.5 and section 3.6

the fission neutrons reduce every 80 µs by a factor of ≈ 0.96, which is slow compared to the

slowing-down time of neutrons in hydrogenous media. In water this time is around 6 µs,

but it does not take into account the effects of the chemical binding and upscattering at

thermal energies [39]. Thus, the thermalization time, in which neutrons are distributed

with a Maxwell-Boltzmann like shape in energy and have found an (quasi) equilibrium

in space by the fundamental (decay) mode distribution, will last longer depending on the

material and medium size. The slowing-down time in the hydrogen of the PE fuel matrix

will have a similar time behavior, which means that the source neutrons within the fuel

region slow down quickly to the thermal energies after the pulse has been injected. The

slowing-down time in the reflector graphite is likewise found to be about 24 µs from 1MeV

to 1 eV. However, the thermalization time in a finite sized graphite medium may last about

1ms [132]. The slower thermalization in the graphite reflector may lead to a storage of fast

and epithermal neutrons from the fuel region, so that a temporary flux gradient from the

reflector into the fuel region establishes causing a temporary dominant net current into

the fuel. This effect is supported by the fact, that the overwhelming part of the resonance

absorption takes place in this energy range. Since the decreasing fission production is the

only neutron source, the net current stabilizes finally in direction of the reflector.

The equivalent results in fig. D.1 have been prepared for the 216 fuel rods configuration

in appendix D. The effect of a net current from the reflector into the fuel region does not

appear. This effect depends thus on the subcriticality of the system. Note that the net

current into the reflector includes also the current from the reflector into the fuel region.

That such a current is visible however has a certain importance for the interpretation of

PNS experiments. In several publications [48,131,133,134] the multipoint kinetic method,

but also few-group multipoint kinetics method, was proposed, if the global behavior of the

reactor is determined by the time characteristic of more than one domain. The multipoint
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kinetic approach considers therefore mean neutron generation constants, effective delayed

neutron fractions, etc. for all defined domains. For these coupled systems interfacing

coefficients have to be determined, which describe the exchange of neutrons between the

domains. These coefficients usually are assumed to be constant, in the theory they are

mentioned to be possibly time-dependent. The example above shows that the coefficients

are not necessarily constant and the time-dependent balance between the domains must be

considered, the time-dependence will be surely needed when the equation system considers

some energy groups explicitly.

5.4 Discussion on Kinetic Parameters

In the TORT-TD evaluation subroutine getpwr the 3
2He(n,p) reaction rate integration is

implemented over the whole reactor volume for this work. This global reaction rate of the

experimental count rate is applied for the characterization of the global time-dependence of

the zero-power reactor. It is interpreted in a similar manner as the amplitude function P (t)

of the point kinetic equation (2.32).

In section 2.1.5 the simplified, feedback-free point kinetic equations have been described.

These equations consider the fast change in power or neutron population with the funda-

mental mode prompt decay constant α0 and the emission of delayed neutrons for a much

longer time scale. All parameters of these equations are effective variables, in that they are

weighted with the static adjoint flux which denotes the importance of a neutron at its par-

ticular energy, direction and position for a target quantity like the neutron production (see

section 2.1.4). It was emphasized there that the kinetic parameter constituting the decay

constant are typically calculated from asymptotic solutions of the effective multiplication

factor equation (2.10).

The static parameter for the 280 fuel rods configuration are listed in table 5.3. The

prompt decay constant is calculated from these according to eq. (2.44) and eq. (2.43)

yielding about −576 s−1. Since α0 is a pure prompt parameter, the benchmark case was

repeated also for the case of prompt neutrons only. This is accomplished by setting all

delayed neutron related quantities in TORT-TD to zero and providing the prompt neutron

production cross section νpΣf instead of the total one. The keff reduces accordingly to

0.954 26 as seen in the fourth column of table 5.3. With the prompt multiplication factor

and the static one the effective delayed neutron fraction can be approximated. Using the

relation βeff = 1− kp

kt
[135] the confirming effective fraction of 754pcm is obtained.

The decay constant of the static calculation is compared with the value in the fifth

column stemming directly from the prompt global reaction rate of fig. 5.6 as slope of

the clearly and ideally straight logarithmic decay between 12ms and 18ms. The direct

comparison of the static and the slope value results in a significant difference and as such a
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Table 5.3: Kinetic parameters as result of static and kinetic simulation with TORT-TD

Parameter Unit Static solution Prompt solution
ln
(
f(0.018)
f(0.012)

)
∆t

∗

keff - 0.961 51 0.954 26
ρ - −0.039 26 −0.047 93
βeff - 0.007 55 0.007 56
Λ 10−5 s 8.13 9.46

α0 s−1 −575.77 −506.67 −487.27
∗ fig. 5.6
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Figure 5.6: Total 3
2He(n,p) reaction rate integrated over whole reactor

Since the static approach was outlined to be only valid for a reactor operating exactly

at or nearly critical the proposal of Difillipo [136] and others [137] is quite plausible to use

the kinetic flux instead of the static flux in the calculation of kinetic parameters. In their

procedure the kinetic flux was obtained by a fundamental mode time eigenvalue calculation

for the subcritical HTR-PROTEUS reactor. In our case the direct time-dependent flux of

the prompt decay is used together with the static adjoint flux for equations (2.36), (2.38)

and (2.41). The calculation of the kinetic parameters is carried out for the purely prompt

case and the total including the delayed neutron contribution in fig. 5.7 with the module

KSAUDI for every time step.

In fig. 5.7a is shown that the effective delayed neutron fraction is not sensitive to the flux

distribution of the kinetic calculation. This can be understood by the fact that the delayed

neutron yield is constant below 0.1MeV, and changes in flux and fission cross section cancel

out due to their appearance in eq. (2.36) and in eq. (2.41) of the normalization integral F .

The neighboring fig. 5.7b is devoted to the mean neutron generation time. Plotted are

the generation time again for the prompt and total case, but also for the fuel and graphite
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Figure 5.7: Kinetic parameters based on kinetic flux integration

reflector region, separately. The generation time of the fuel region does not change. The

generation time of the reflector region increases in the prompt case and stabilizes after

5ms to a value 16% larger than the static one. In the case including delayed neutrons an

increasing deviation from the prompt development is observed which stabilizes finally to

the static generation time of 8.1 µs. The time range of the deviation coincides with the

appearance of the delayed neutron contributions in fig. 5.6.

This leads to a quite important observation. The pure prompt neutron generation time

needs about 6ms in fig. 5.7b to establish. However, after 3ms the delayed neutrons start

to cause the significant change in the mean generation in the real experiment. Thus, the

prompt decay is superposed by the delayed neutron fission source after this time before it

has developed to the fundamental mode decay.

For the enlarged mean neutron generation time and the prompt case the prompt decay

constant was calculated in table 5.3 in the fourth column where the new prompt parameters

are emphasized in red. The decay constant is evaluated to match within 4% compared to

the difference of 15.3% of the static solution.

By this numerical example it is shown how a fundamental parameter like the mean

neutron generation time can be predicted in a more realistic manner by the knowledge of

the time-dependent flux distribution. Moreover, it shows that the application of reactivity

measurement methods like the slope fit method cannot be applied without correction this

reactor system, because the delayed neutrons (harmonics) appear before the fundamental

mode decay has established.
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Chapter 6

Conclusions
The presented discussions and developments aim at a consistent and innovative description

of the neutron physics in a Pulsed Neutron Source (PNS) experiment in subcritical reactors.

The difficulty consisted in the fact that most of the validated procedures in reactor physic

code systems address the neutron physics of critical nuclear systems, which are treated

generally by application of the keff eigenvalue or associated problems in the static case or

predominantly asymptotic solutions in the time-dependent case.

In order to elucidate the main conceptual differences the theory (chapter 2) introduces

the various ways of handling the time-dependent subcritical problem. One correct way

to describe the time-dependent behavior of a source-free subcritical reactor is outlined to

be the time eigenvalue equation. It contains the higher harmonics or modes which may

play a role in the time range of PNS experiment measurements on top of the persisting

fundamental prompt decay mode. The disadvantages in the application originate from the

static nature of the time eigenvalue equation, which develops to a time-dependent solution

as consequence of a modal synthesis approach. The initial condition i.e. the excitation by

the pulsed neutron source has to be approximated, since the time eigenvalue equation is a

homogeneous equation. Another drawback is the prompt nature of the solution neglecting

the delayed neutron emission and harmonics, which lead over to the delayed neutron

background.

A second correct way, the direct time-dependent method in form of the fully implicit time

integration scheme, was given the preference. The main reason lays in the consideration of

the neutron motion based on physical principles. In other words, the method allows for non-

asymptotic solutions of the instationary system, which may transition into quasi-asymptotic

states described by weighted or effective parameters such as mean neutron generation time

and effective delayed neutron fraction in the frame of the integral point kinetic equations.

Since calculated reaction rates and balances are the window to the experimental mea-

surements and detector responses, a major part of the effort is put into the generation

of accurate macroscopic cross sections based on recent cross section evaluations. For this

purpose new microscopic fine-group master libraries for the KANEXT reactor physics

code are created (chapter 3). The outcome is a fine-energy-group structure of 350 energy

groups with the aim to account adequately for neutron sources with a dedicated energy

subdivision between 1MeV and 20MeV, for improved prediction of the slowing-down in

thermal and fast energy spectrum systems with a constant lethargy grid of 0.05 width and to

handle detailed thermal scattering including chemical binding effects in water, polyethylene
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and graphite. Special attention has been payed to the resolution of neutron cross section

resonances of important reactor materials like 238
92U, 240

94Pu and 242
94Pu. The master libraries

have been prepared for the JEFF 3.1, JEFF 3.1.1 and ENDF/B VII.0 evaluation, the

production procedure is however kept general for use of other evaluations stored in the

standard ENDF-6 format.

For the subsequent cross section homogenization and collapsing a one-dimensional trans-

port module was implemented in KANEXT based on the ANISN code and arbitrary quadrature

and Legendre order for the investigation of anisotropy effects in the cell calculation. The

JEFF 3.1 and ENDF/B VII.0 libraries are validated by use of the KANEXT code on pin and

core level against MCNP calculations and show very good performance for the code-to-code

comparison. By detailed analysis of the scattering properties of polyethylene and graphite

potential numerical issues for deterministic transport based simulations have been found

due to truncated Legendre expansions of the differential scattering cross section.

In view of the time-dependent simulation of a PNS experiment a consistent set of related

constants is provided. For this purpose the new module DLAYPM was created to calculate

problem-dependent physical delayed neutron data of the involved isotopes based on their

fission rate. While in case of JEFF 3.1 the data rely on the old Keepin sets, a large deviation

from this was observed for ENDF/B VII.0 looking at the abundances of the delayed neutron

time groups. Since in JEFF based evaluations the number of time groups was extended

to 8, all involved KANEXT modules had to be modified. To provide mixture averaged fission

spectra - prompt and delayed - the module CHICOR was adapted accordingly.

The new time-dependent source capability (chapter 4) was implemented in the

direct time-dependent discrete ordinate transport code TORT-TD in a cooperation with the

German Technical Safety Organization (TSO) GRS, which implemented the time-dependent

source neutron emission and the author of the thesis developed and investigated a new

general approach to represent the neutron source in terms of the spherical harmonics

expansion needed in deterministic transport codes. It is understood that the nature of

the spherical harmonics functions allow either an energy group discretization of the source

neutrons and isotropic emission equivalent to the zeroth moment expansion or a one-group

representation with distinct anisotropy that is an expansion to the third order in case of

the (d,d) neutron source. Depending on the deterministic transport code the resulting

spherical harmonics coefficients may need an additional rotation to match the underlying

base coordinate system. Since TORT/TORT-TD and PARTISN use a non-standard coordinate

system the (d,d) neutron source was modeled isotropically and mono-energetically in the

PNS experiment simulation.

Based on the new capability of the TORT-TD code and the improved macroscopic cross

sections and time constants the results of the simulation of the pulsed YALINA-

Thermal experiments are presented for the 280 and the 216 fuel rods case and the (d,d)
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neutron source (chapter 5).

Since the underlying benchmark definition deviates significantly from the experimental

setup for important isotopes of the fuel, another set of cross sections was generated to

account for 234
92U content and impurities described in literature. The comparison of the

simulation result and the experimental data shows a convincing performance for the prompt

part of the experiment in both the fuel and reflector region. It also shows that for the

consideration of the delayed neutrons a more suitable guess of the precursor concentrations

is needed. In the subsequent investigations the results of the original YALINA-Thermal

benchmark were used.

A close look to the first 100 µs of the simulated 3
2He(n,p) detector response exhibits an

increasing rate for a certain time after the pulse, whereas the total fission rate decreases

immediately. This behavior is the consequence of the fast increase of the detector cross

section towards thermal neutron energies with an almost ideal 1
v shape. The provided

experimental data however is missing this detail.

The detailed time-dependent resolution of the net neutron current at the interface

between the fuel and reflector region manifests one of the advantages of getting the phase-

space solution at every time step. For some energy groups a temporary net inflow of

neutrons from the reflector region is observed for the less subcritical reactor (keff ' 0.96),

which is not observed for the deep subcritical configuration and thus seems to be correlated

to the level of subcriticality. This time and energy dependence of the neutron current

at region interfaces is important to consider, if coupling coefficients in multipoint and

multienergy domain extensions to the common point kinetics approach are used to describe

the integral behavior of a reactor.

With the final discussion of the main kinetic parameters and alternative calculation

routes the importance of the direct time-dependent solution is highlighted. It is shown that

the fundamental mode decay constant can be extracted from a purely prompt simulation

of the pulse at late times. The value agrees better with an improved definition of the

parameter introducing the time-dependent flux. It is also shown that the delayed neutron

harmonics are visible quite early in the experiment and any area-ratio or slope fit method

must account for this in order to extract reliably the fundamental decay constant.
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Appendix A

Description of the YALINA-Thermal

Reactor
In the following the general reactor geometry and the loading configurations of the YALINA-

Thermal reactor is described. The YALINA-Thermal benchmark [138] was extended and

published within the IAEA combined CRP "Analytical and Experimental Benchmark

Analysis on Accelerator Driven Systems" and "Low Enriched Uranium Fuel Utilization in

Accelerator Driven Systems" [42].

A.1 Reactor Geometry and Configuration

The main construction elements of the reactor are given in fig. A.1, A.2 and A.3. These

are the neutron producing target with the beam tube, the core, the reflector and the

thin surrounding layers. The outer dimensions of the reactor are 1208mm in x-direction,

1203mm in y-direction and 1008mm in z-direction. The graphite reflector (fig. A.1) is

almost as thick as the core itself. In the x-direction it introduces an asymmetry, where

the bottom part measures 466mm and the top part 324mm. In y-direction the symmetric

reflector is found of 400mm on each side. The active core’s dimensions are 400mm in

height and width and 500mm in the z-direction without taking the ending parts of the fuel

rods in consideration. An additional asymmetry is introduced along the z-axis, because the

reflector overlaps in the front part 74mm but in the back part 350mm, see fig. A.2 and

fig. A.3. A massive steel plate shields the front of the core. A large air volume adjoins

the end of the core in axial direction. The active core is axially subdivided into a region

where the middle Fuel Assembly (FA) position contains a lead buffer over 216mm and the

remaining space is used for the beam tube. The three-dimensional schematic plot of fig. A.4

gives additionally an impression of the facility geometry.

The active core consists of 25 quadratic positions with side length of 80mm and a depth

of 500mm each (fig. A.5). Except for the four positions in the corner, 21 are reserved

for the placement of FAs. While the inner radial FAs are always loaded with 12 fuel

rods, the loading of the outer FAs depends on the configuration. Fig. A.5 shows the

three configurations (280, 245 and 221 fuel rods) of the core which cover three levels of

subcriticality.

The fuel type EK-10 is characterized as an UO2 +MgO ceramic composite with an 235
92U

enrichment of 10%. The fuel rod diameter amounts to 3.5mm surrounded by an aluminum
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A.1. Reactor Geometry and Configuration

Figure A.1: View along the x - y axis through the YALINA-Thermal reactor taken from
benchmark definition [42]
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Appendix A. Description of the YALINA-Thermal Reactor

Figure A.2: View along the x - z axis through the YALINA-Thermal reactor taken from
benchmark definition [42]
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A.1. Reactor Geometry and Configuration

Figure A.3: View along the y - z axis through the YALINA-Thermal reactor taken from
benchmark definition [42]
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Appendix A. Description of the YALINA-Thermal Reactor

Figure A.4: Schematic view of the YALINA-Thermal reactor

clad of 1.5mm thickness followed by a small air gap of 0.5mm thickness. The rods have a

total length of 590mm where the 90mm not belonging to the active height correspond to

the massive aluminum ending caps of the fuel rods. The moderator material which acts

simultaneously as main structure material in the core is Polyethylene (PE).

Four flux measurement channels (MC1-MC4) are located at each corner of the core.

These are not used during the experiments, but have only to be considered geometrically in

the simulation. In total seven Experimental Channels (ECs) are placed in the reactor, four

of them axially in the core (EC1-EC4), two axially in the reflector (EC5, EC6) and one

(EC7) located at the axial position of the beam target starting at the right border of the

core (see fig. A.1).

A.2 Neutron Source

The YALINA-Thermal benchmark specification includes three different neutron sources,

namely 252
98Cf, (d,d) and (d,t) sources. The first one makes use of the spontaneous fission

that appears with 3.092% in competition to the α-decay as disintegration reaction [139].

With the californium source applied, the experimental setup does not involve the stainless

steel beam tube visible in fig. A.2 and A.3. The two latter neutron sources are conventional

fusion neutron sources. In case of the (d,d) neutron source two deuterium nuclei fusion to

an 3
2He atom emitting one neutron of 2.5MeV. The (d,t) neutron sources let one deuterium

nucleus and one tritium nucleus fusion to an 4
2He atom emitting one neutron of 14.1MeV.

For the experiments only the (d,d) neutron source has been available and thus the main
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A.2. Neutron Source

(a) 280 fuel rods (b) 245 fuel rods

(c) 221 fuel rods

Figure A.5: Three configurations of YALINA-Thermal taken from benchmark definition [42]
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Appendix A. Description of the YALINA-Thermal Reactor

focus of the work is related to this neutron source. The geometry of the beam tube is shown

in fig. A.8.

A.3 Geometrical Simplifications for Deterministic Calcula-

tions

A.3.1 Unit Cell

The core contains at maximum 280 fuel pins (fig. A.5a) which can be classified as unit cell

of the fuel assembly. The reactor is modeled on the pin level without a need for a lattice

calculation of the FA. Fig. A.6a shows the real dimensions and fig. A.6b its Wigner-Seitz

cell [1]. KANEXT has a three zone Wigner-Seitz representation for cell calculations. Because

of the small total cross section of air, the air region is included in the extended clad zone.

The density of the clad material aluminum is reduced accordingly by 29.17%.

In case of the empty rod positions in the outer FA rings, PE is smeared over the cell

and the density is reduced by 30.25%.

(a) Original geometry (b) Wigner-Seitz cell

Figure A.6: Unit cell geometry

A.3.2 Flux Measurement Channels

The flux measurement channels MC1 - MC4 are cylindrical holes of 55mm diameter

surrounded by PE. The channels are not used for measurements, thus air is modeled inside.

In total, they have the size of a subassembly and the axial length equals the length of the

active core. In order to model this geometry in deterministic transport calculations it is

divided into 16 parts by overlaying a grid with the characteristic length of the unit cell
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A.3. Geometrical Simplifications for Deterministic Calculations

Material Zone 1 Zone 2 Zone 3

Air [vol-%] 0.00 24.32 99.84
PE [vol-%] 100.00 75.68 0.16

Figure A.7: Simplified model of the flux measurement channels with overlayed dashed grid

(fig. A.7). From this treatment result three material zones from which one contains only

PE, another almost only air and the last contains about 76% PE.

A.3.3 Beam Tube and Target

The complex layout of the beam tube and the target is shown in fig. A.8. It consists of a

tube of stainless steel with an integrated water cooling system for the target area, an inner

vacuum region and an outer air environment. Since the geometry is modeled in Cartesian

geometry, three approximations can be used to model this device. Either the materials are

smeared over the subassembly region, or the cylinders are approximated with a stair case

function, or - as done in this work - they are considered as quadratic cases with the same

area. The first approximation is excluded as it does not account for the spatial self-shielding

important for thermal systems. Test calculations show a difference in criticality of about

1000pcm compared to detailed calculations. The stair case would enlarge the size of the

model due to the necessity of additional geometric intervals.

Figure A.8: Beam tube and target taken from benchmark definition [42]

The figures A.10 and A.12 illustrate the quadratic approximation of the cylindrical

geometry. The side length of each square belonging to layer i is calculated with help of
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Appendix A. Description of the YALINA-Thermal Reactor

eq. (A.1).

a1 =
√
π r

ai =
√
π (r2

i − r2
i−1) + a2

i−1 for i = 2, . . . , N
(A.1)

A.3.4 Experimental Channels and Detector Responses

Two kinds of measurements have been performed in the YALINA-Thermal reactor. Static

analysis of reaction rate traverses within the ECs and transient analysis of reaction rates

during a neutron source pulse at a specified position. In the benchmark several activation

materials are defined, whereas this work considers only the 3
2He(n,p) rate measured in the

PNS experiments. The benchmark uses a unified approach to consider the disadvantage of

the geometric representation in the deterministic calculation and to simplify the comparison

with the MC generated results. In the static approach the required reaction rates in the ECs

are calculated in a post-processing step by simply integrating the product of the neutron

flux and the reaction cross section of the mesh cell without modeling the real geometry. For

the simulation of pulses, the detector responses are calculated in the same manner without

modeling the detector explicitly at the axial position of the neutron source. In the core

calculation the zones contain simply air and have the size of a unit cell, except EC4 which is

placed in a parallel epiped with a smaller side length 9.75mm according to eq. (A.1). The

length of the detector volumes along the z-axis is 25 cm with the center located at z = 0.

A.4 Material Regions and Associated Cross Section Sets

The material regions considered in the core simulation of the YALINA-Thermal reactor

are listed in table A.1. With help of the description the link of the regions to the defined

benchmark geometry of figures A.1, A.2 and A.9 is reproducible.

A.5 Spatial Discretization of the YALINA-Thermal Reactor

The final mesh layout is common to the simulations with the discrete ordinates transport

codes TORT, PARTISN and TORT-TD in section 3.5 and throughout chapter 5. This mesh

is used for the 280 fuel rods configuration as plotted here and for the 216 fuel rods

configuration. The reactor is subdivided into 84× 83× 26 mesh intervals in the x-, y-,

z-direction, respectively. The core region and several cm of the surrounding reflector use a

fine mesh with a radial mesh interval smaller than or equal to 2 cm; all other mesh intervals

are not larger than 5 cm.
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A.5. Spatial Discretization of the YALINA-Thermal Reactor

Table A.1: Correspondence of cross section region numbers and their description

Region Description

1 organic glass
2 borated polyethylene
3 EC4 (air)
4 graphite reflector
5 air
6 begin of aluminum clad
7 MC: polyethylene (see section A.3.2)
8 MC: mixed polyethylene and air
9 unit cell without fuel rod

10 aluminum clad with polyethylene and some air
11 MC: air
12 stainless steel casing of FA
13 lead buffer
14 unit cell with fuel rod
15 coolant water of beam tube
16 copper target
17 end of aluminum clad with polyethylene and air

The geometry and material data sets are stored in an interface file of the SILO software

package [140]. The software interface is implemented in the TORT-TD subroutine getpwr.

The open-source visualization and graphical analysis tool VisIt [141] can read the SILO

files and organize the overlay of the mesh over the material regions.
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Figure A.9: y-z cross sectional view through the YALINA-Thermal model
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A.5. Spatial Discretization of the YALINA-Thermal Reactor

Figure A.10: x-z cross sectional view through the YALINA-Thermal model
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Figure A.11: x-y cross sectional view through the YALINA-Thermal model at z = −10 cm
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A.5. Spatial Discretization of the YALINA-Thermal Reactor

Figure A.12: x-y cross sectional view through the YALINA-Thermal model at z = 10 cm
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Figure A.13: x-y cross sectional view through the YALINA-Thermal model zoomed to the
core region at z = 10 cm
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Appendix B

Reactor Physics Code System KANEXT

B.1 Group Structures

B.1.1 69 Energy Groups - the Modified WIMS Structure

The listed group structure corresponds to the original WIMS [72] structure except for the

first upper energy boundary, which is set to the usual maximum of 20MeV.
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B.1. Group Structures

Table B.1: The extended WIMS 69 energy group structure

Group Emax ∆E ∆u Group Emax ∆E ∆u

MeV 28 4.000 0.700 0.192 37
29 3.300 0.700 0.238 41

1 20.0 13.935 1.193 12 30 2.600 0.500 0.213 57
2 6.0655 2.3865 0.499 98 31 2.100 0.600 0.336 47
3 3.679 1.448 0.500 19 32 1.500 0.200 0.143 10
4 2.231 0.878 0.500 13 33 1.300 0.150 0.122 60
5 1.353 0.532 0.499 56 34 1.150 0.027 0.023 76
6 0.821 0.321 0.495 92 35 1.123 0.026 0.023 42
7 0.50 0.1975 0.502 53 36 1.097 0.026 0.023 99
8 0.3025 0.1195 0.502 60 37 1.071 0.026 0.024 58
9 0.183 0.072 0.499 96 38 1.045 0.025 0.024 21

10 0.111 0.043 66 0.499 78 39 1.020 0.024 0.023 81
11 0.067 34 0.026 49 0.499 85 40 0.996 0.024 0.024 39
12 0.040 85 0.016 07 0.499 87 41 0.972 0.022 0.022 89
13 0.024 78 0.009 75 0.499 99 42 0.950 0.040 0.043 02
14 0.015 03 0.005 912 0.499 80 43 0.910 0.060 0.068 21

eV 44 0.850 0.070 0.085 94
45 0.780 0.155 0.221 54

15 9118.0 3588.0 0.500 06 46 0.625 0.125 0.223 14
16 5530.0 2010.9 0.451 98 47 0.500 0.100 0.223 14
17 3519.1 1279.65 0.451 95 48 0.400 0.050 0.133 53
18 2239.5 814.35 0.452 01 49 0.350 0.030 0.089 61
19 1425.1 518.202 0.451 97 50 0.320 0.020 0.064 54
20 906.90 539.636 0.903 96 51 0.300 0.020 0.068 99
21 367.26 218.534 0.903 94 52 0.280 0.030 0.113 33
22 148.73 73.227 0.677 98 53 0.250 0.030 0.127 83
23 75.501 27.449 0.451 87 54 0.220 0.040 0.200 67
24 48.052 20.352 0.550 85 55 0.180 0.040 0.251 31
25 27.7 11.732 0.550 85 56 0.140 0.040 0.336 47
26 15.968 6.091 0.480 38 57 0.100 0.020 0.223 14
27 9.877 5.877 0.903 91 58 0.080 0.013 0.177 33

59 0.067 0.009 0.144 25
60 0.058 0.008 0.148 42
61 0.050 0.008 0.174 35
62 0.042 0.007 0.182 32
63 0.035 0.005 0.154 15
64 0.030 0.005 0.182 32
65 0.025 0.005 0.223 14
66 0.020 0.005 0.287 68
67 0.015 0.005 0.405 47
68 0.010 0.005 0.693 15
69 0.005 0.004 1.609 44

0.001

132



Appendix B. Reactor Physics Code System KANEXT

B.1.2 350 Energy Groups - the New KANEXT Structure

The new KANEXT group structure is composed of

• the VITAMIN-J [74] structure for the first 16 energy groups from 10MeV to 19.64MeV

• a constant lethargy width of ∆u = 0.05 between 4 eV and 10MeV yielding 292 further

groups [73]

• the thermal energy groups of the WIMS [72] structure adding another 42 groups from

0.001 eV to 4 eV
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B.1. Group Structures

Table B.2: The new 350 energy groups KANEXT structure (part 1)

Group Emax ∆E ∆u Group Emax ∆E ∆u

MeV 47 2.018 64 0.098 0.050 01
48 1.920 17 0.094 0.050 01

1 19.640 2.307 0.124 96 49 1.826 50 0.089 0.050 01
2 17.3330 0.428 0.025 00 50 1.737 40 0.085 0.050 02
3 16.9050 0.418 0.025 04 51 1.652 64 0.081 0.050 01
4 16.4870 0.804 0.050 00 52 1.572 02 0.077 0.050 01
5 15.6830 0.765 0.050 01 53 1.495 33 0.073 0.050 01
6 14.9180 0.368 0.024 98 54 1.422 39 0.069 0.050 01
7 14.5500 0.359 0.024 98 55 1.353 00 0.073 0.055 50
8 14.1910 0.351 0.025 05 56 1.279 95 0.069 0.055 51
9 13.8400 0.341 0.024 95 57 1.210 84 0.065 0.055 51

10 13.4990 0.659 0.050 05 58 1.145 46 0.062 0.055 51
11 12.8400 0.317 0.025 00 59 1.083 61 0.059 0.055 51
12 12.5230 0.309 0.024 98 60 1.025 10 0.0553 0.055 50
13 12.2140 0.596 0.050 03 61 0.969 75 0.0524 0.055 51
14 11.6180 0.566 0.049 94 62 0.917 39 0.0495 0.055 51
15 11.0520 0.539 0.050 00 63 0.867 86 0.0469 0.055 51
16 10.5130 0.513 0.050 03 64 0.821 00 0.0440 0.055 10
17 10.0000 0.5404 0.055 55 65 0.776 99 0.0417 0.055 10
18 9.459 63 0.5112 0.055 55 66 0.735 33 0.0394 0.055 10
19 8.948 46 0.4836 0.055 55 67 0.695 91 0.0373 0.055 10
20 8.464 91 0.4574 0.055 55 68 0.658 60 0.0353 0.055 10
21 8.007 49 0.4327 0.055 55 69 0.623 29 0.0334 0.055 10
22 7.574 79 0.4093 0.055 55 70 0.589 88 0.0316 0.055 10
23 7.165 47 0.3872 0.055 55 71 0.558 25 0.0299 0.055 10
24 6.778 26 0.3663 0.055 55 72 0.528 33 0.0283 0.055 10
25 6.411 99 0.3465 0.055 55 73 0.500 00 0.0245 0.050 25
26 6.065 50 0.3278 0.055 55 74 0.475 50 0.0233 0.050 25
27 5.737 73 0.3101 0.055 55 75 0.452 19 0.0222 0.050 25
28 5.427 68 0.2933 0.055 55 76 0.430 03 0.0211 0.050 25
29 5.134 38 0.2775 0.055 55 77 0.408 95 0.0200 0.050 25
30 4.856 93 0.2625 0.055 55 78 0.388 91 0.0191 0.050 25
31 4.594 47 0.2483 0.055 55 79 0.369 85 0.0181 0.050 25
32 4.346 19 0.2349 0.055 55 80 0.351 72 0.0172 0.050 25
33 4.111 33 0.2222 0.055 55 81 0.334 48 0.0164 0.050 26
34 3.889 16 0.2102 0.055 55 82 0.318 09 0.0156 0.050 25
35 3.679 00 0.1795 0.050 02 83 0.302 50 0.0148 0.050 26
36 3.499 51 0.1707 0.050 02 84 0.287 67 0.0141 0.050 26
37 3.328 77 0.1624 0.050 02 85 0.273 57 0.0134 0.050 26
38 3.166 36 0.1545 0.050 02 86 0.260 16 0.0128 0.050 26
39 3.011 88 0.1469 0.050 02 87 0.247 41 0.0121 0.050 26
40 2.864 94 0.1398 0.050 02 88 0.235 28 0.0115 0.050 26
41 2.725 16 0.1330 0.050 02 89 0.223 75 0.0110 0.050 26
42 2.592 20 0.1265 0.050 02 90 0.212 78 0.0104 0.050 26
43 2.465 73 0.1203 0.050 02 91 0.202 35 0.0099 0.050 26
44 2.345 43 0.1144 0.050 02 92 0.192 43 0.0094 0.050 26
45 2.231 00 0.1088 0.050 01 93 0.183 00 0.0099 0.055 55
46 2.122 17 0.1035 0.050 02 94 0.173 11 0.0094 0.055 55
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Table B.3: The new 350 energy groups KANEXT structure (part 2)

Group Emax ∆E ∆u Group Emax ∆E ∆u

MeV 141 0.012 723 5 0.000 687 3 0.055 53
142 0.012 036 2 0.000 650 2 0.055 53

95 0.163 757 0 0.008 849 0 0.055 55 143 0.011 386 0 0.000 615 1 0.055 54
96 0.154 908 0 0.008 370 0 0.055 55 144 0.010 770 9 0.000 581 8 0.055 53
97 0.146 538 0 0.007 918 0 0.055 55 145 0.010 189 1 0.000 550 4 0.055 53
98 0.138 620 0 0.007 491 0 0.055 56 eV
99 0.131 129 0 0.007 086 0 0.055 55

100 0.124 043 0 0.006 702 0 0.055 54 146 9638.69 520.69 0.050 01
101 0.117 341 0 0.006 341 0 0.055 55 147 9118.00 444.74 0.050 01
102 0.111 000 0 0.005 996 0 0.055 53 148 8673.26 423.05 0.050 01
103 0.105 004 0 0.005 671 9 0.055 53 149 8250.21 402.41 0.050 01
104 0.099 332 1 0.005 365 5 0.055 53 150 7847.80 382.80 0.050 01
105 0.093 966 6 0.005 075 8 0.055 53 151 7465.00 364.11 0.050 01
106 0.088 890 8 0.004 801 6 0.055 53 152 7100.89 346.35 0.050 01
107 0.084 089 2 0.004 542 3 0.055 53 153 6754.54 329.47 0.050 01
108 0.079 546 9 0.004 296 8 0.055 53 154 6425.07 313.39 0.050 01
109 0.075 250 1 0.004 064 9 0.055 53 155 6111.68 298.11 0.050 22
110 0.071 185 2 0.003 845 2 0.055 53 156 5813.57 283.57 0.050 22
111 0.067 340 0 0.003 637 9 0.055 54 157 5530.00 270.86 0.050 22
112 0.063 702 1 0.003 441 5 0.055 54 158 5259.14 257.59 0.050 22
113 0.060 260 6 0.003 255 6 0.055 54 159 5001.55 244.98 0.050 22
114 0.057 005 0 0.003 079 6 0.055 54 160 4756.57 232.97 0.050 22
115 0.053 925 4 0.002 913 4 0.055 54 161 4523.60 221.57 0.050 22
116 0.051 012 0 0.002 755 8 0.055 54 162 4302.03 210.71 0.050 22
117 0.048 256 2 0.002 607 1 0.055 54 163 4091.32 200.39 0.050 22
118 0.045 649 1 0.002 466 1 0.055 54 164 3890.93 190.58 0.050 22
119 0.043 183 0 0.002 333 0 0.055 54 165 3700.35 181.25 0.050 22
120 0.040 850 0 0.002 207 0 0.055 54 166 3519.10 172.36 0.050 22
121 0.038 643 0 0.002 087 8 0.055 54 167 3346.74 163.92 0.050 22
122 0.036 555 2 0.001 974 9 0.055 54 168 3182.82 155.89 0.050 22
123 0.034 580 3 0.001 868 3 0.055 54 169 3026.93 148.26 0.050 22
124 0.032 712 0 0.001 767 3 0.055 54 170 2878.67 141.00 0.050 22
125 0.030 944 7 0.001 671 9 0.055 54 171 2737.67 134.09 0.050 22
126 0.029 272 8 0.001 581 5 0.055 54 172 2603.58 127.52 0.050 22
127 0.027 691 3 0.001 496 1 0.055 54 173 2476.06 121.27 0.050 22
128 0.026 195 2 0.001 415 2 0.055 54 174 2354.79 115.34 0.050 22
129 0.024 780 0 0.001 339 1 0.055 56 175 2239.45 109.69 0.050 22
130 0.023 440 9 0.001 266 7 0.055 55 176 2129.76 104.31 0.050 22
131 0.022 174 2 0.001 198 3 0.055 56 177 2025.45 99.21 0.050 22
132 0.020 975 9 0.001 133 5 0.055 55 178 1926.24 94.35 0.050 22
133 0.019 842 4 0.001 072 3 0.055 56 179 1831.89 89.73 0.050 22
134 0.018 770 1 0.001 014 3 0.055 55 180 1742.16 85.33 0.050 22
135 0.017 755 8 0.000 959 5 0.055 55 181 1656.83 81.15 0.050 22
136 0.016 796 3 0.000 907 7 0.055 56 182 1575.68 77.18 0.050 22
137 0.015 888 6 0.000 858 6 0.055 55 183 1498.50 73.40 0.050 22
138 0.015 030 0 0.000 811 9 0.055 53 184 1425.10 69.80 0.050 22
139 0.014 218 1 0.000 768 1 0.055 54 185 1355.30 66.38 0.050 22
140 0.013 450 0 0.000 726 5 0.055 53 186 1288.92 63.13 0.050 21
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Table B.4: The new 350 energy groups KANEXT structure (part 3)

Group Emax ∆E ∆u Group Emax ∆E ∆u

eV 228 156.388 7.660 0.050 22
229 148.728 7.557 0.052 15

187 1225.79 60.04 0.050 22 230 141.171 7.174 0.052 16
188 1165.75 57.09 0.050 21 231 133.997 6.809 0.052 15
189 1108.66 54.30 0.050 22 232 127.188 6.463 0.052 15
190 1054.36 51.64 0.050 22 233 120.725 6.135 0.052 16
191 1002.72 49.116 0.050 22 234 114.590 5.823 0.052 15
192 953.604 46.707 0.050 22 235 108.767 5.527 0.052 15
193 906.897 44.419 0.050 22 236 103.240 5.246 0.052 15
194 862.478 42.244 0.050 22 237 97.9942 4.9796 0.052 15
195 820.234 40.174 0.050 22 238 93.0146 4.7264 0.052 15
196 780.060 38.207 0.050 22 239 88.2882 4.4864 0.052 15
197 741.853 36.336 0.050 22 240 83.8018 4.2584 0.052 15
198 705.517 34.555 0.050 22 241 79.5434 4.0420 0.052 15
199 670.962 32.864 0.050 22 242 75.5014 3.6971 0.050 21
200 638.098 31.254 0.050 22 243 71.8043 3.5161 0.050 21
201 606.844 29.722 0.050 22 244 68.2882 3.3440 0.050 21
202 577.122 28.268 0.050 22 245 64.9442 3.1802 0.050 21
203 548.854 26.883 0.050 22 246 61.7640 3.0244 0.050 21
204 521.971 25.565 0.050 22 247 58.7396 2.8764 0.050 21
205 496.406 24.314 0.050 22 248 55.8632 2.7354 0.050 21
206 472.092 23.122 0.050 22 249 53.1278 2.6016 0.050 21
207 448.970 21.991 0.050 22 250 50.5262 2.4742 0.050 21
208 426.979 20.913 0.050 22 251 48.0520 2.3470 0.050 08
209 406.066 19.889 0.050 22 252 45.7050 2.2324 0.050 08
210 386.177 18.915 0.050 22 253 43.4726 2.1234 0.050 08
211 367.262 17.988 0.050 22 254 41.3492 2.0197 0.050 08
212 349.274 17.107 0.050 22 255 39.3295 1.9210 0.050 08
213 332.167 16.270 0.050 22 256 37.4085 1.8272 0.050 08
214 315.897 15.472 0.050 22 257 35.5813 1.7379 0.050 08
215 300.425 14.715 0.050 22 258 33.8434 1.6531 0.050 08
216 285.710 13.994 0.050 22 259 32.1903 1.5723 0.050 08
217 271.716 13.308 0.050 22 260 30.6180 1.4955 0.050 08
218 258.408 12.657 0.050 22 261 29.1225 1.4225 0.050 08
219 245.751 12.037 0.050 22 262 27.7000 1.3530 0.050 08
220 233.714 11.447 0.050 22 263 26.3470 1.2868 0.050 07
221 222.267 10.887 0.050 22 264 25.0602 1.2241 0.050 08
222 211.380 10.353 0.050 22 265 23.8361 1.1642 0.050 08
223 201.027 9.846 0.050 22 266 22.6719 1.1074 0.050 08
224 191.181 9.364 0.050 22 267 21.5645 1.0533 0.050 08
225 181.817 8.906 0.050 22 268 20.5112 1.0018 0.050 08
226 172.911 8.469 0.050 22 269 19.5094 0.9529 0.050 08
227 164.442 8.054 0.050 22 270 18.5565 0.9064 0.050 08
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Table B.5: The new 350 energy groups KANEXT structure (part 4)

Group Emax ∆E ∆u Group Emax ∆E ∆u

eV 312 2.100 0.600 0.336 47
313 1.500 0.200 0.143 10

271 17.6501 0.8621 0.050 08 314 1.300 0.150 0.122 60
272 16.7880 0.8200 0.050 08 315 1.150 0.027 0.023 76
273 15.9680 0.8299 0.053 37 316 1.123 0.026 0.023 42
274 15.1381 0.7869 0.053 38 317 1.097 0.026 0.023 99
275 14.3512 0.7459 0.053 37 318 1.071 0.026 0.024 58
276 13.6053 0.7071 0.053 37 319 1.045 0.025 0.024 21
277 12.8982 0.6704 0.053 38 320 1.020 0.024 0.023 81
278 12.2278 0.6356 0.053 38 321 0.996 0.024 0.024 39
279 11.5922 0.6025 0.053 37 322 0.972 0.022 0.022 89
280 10.9897 0.5712 0.053 38 323 0.950 0.040 0.043 02
281 10.4185 0.5415 0.053 37 324 0.910 0.060 0.068 21
282 9.8770 0.4837 0.050 22 325 0.850 0.070 0.085 94
283 9.393 26 0.460 06 0.050 22 326 0.780 0.155 0.221 54
284 8.933 20 0.437 53 0.050 22 327 0.625 0.125 0.223 14
285 8.495 67 0.416 09 0.050 22 328 0.500 0.100 0.223 14
286 8.079 58 0.200 34 0.025 11 329 0.400 0.050 0.133 53
287 7.879 24 0.195 38 0.025 11 330 0.350 0.030 0.089 61
288 7.683 86 0.190 53 0.025 11 331 0.320 0.020 0.064 54
289 7.493 33 0.185 80 0.025 11 332 0.300 0.020 0.068 99
290 7.307 53 0.181 20 0.025 11 333 0.280 0.030 0.113 33
291 7.126 33 0.176 71 0.025 11 334 0.250 0.030 0.127 83
292 6.949 62 0.172 32 0.025 11 335 0.220 0.040 0.200 67
293 6.777 30 0.168 05 0.025 11 336 0.180 0.040 0.251 31
294 6.609 25 0.163 88 0.025 11 337 0.140 0.040 0.336 47
295 6.445 37 0.159 83 0.025 11 338 0.100 0.020 0.223 14
296 6.285 54 0.155 85 0.025 11 339 0.080 0.013 0.177 33
297 6.129 69 0.152 00 0.025 11 340 0.067 0.009 0.144 25
298 5.977 69 0.148 22 0.025 11 341 0.058 0.008 0.148 42
299 5.829 47 0.144 55 0.025 11 342 0.050 0.008 0.174 35
300 5.684 92 0.140 96 0.025 11 343 0.042 0.007 0.182 32
301 5.543 96 0.137 47 0.025 11 344 0.035 0.005 0.154 15
302 5.406 49 0.134 06 0.025 11 345 0.030 0.005 0.182 32
303 5.272 43 0.130 74 0.025 11 346 0.025 0.005 0.223 14
304 5.141 69 0.251 82 0.050 22 347 0.020 0.005 0.287 68
305 4.889 87 0.239 50 0.050 22 348 0.015 0.005 0.405 47
306 4.650 37 0.227 76 0.050 22 349 0.010 0.005 0.693 15
307 4.422 61 0.216 61 0.050 22 350 0.005 0.004 1.609 44
308 4.206 00 0.206 0.050 22 0.001
309 4.000 00 0.700 0.192 37
310 3.300 00 0.700 0.238 41
311 2.600 00 0.500 0.213 57
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B.2 KANEXT Modules

B.2.1 SCAPLO

The module SCAPLO is newly created to investigate the differential scattering properties of the

multigroup scattering cross sections as generated by standard processing codes like NJOY [23].

Scattering can thereby be any scattering(-like) reaction e.g. elastic, inelastic, (n, xn), whose

secondary angular distribution is approximated by means of the Legendre expansion. The

angular group-to-group scattering distribution is written into a file immediately readable

by the Grace plotting tool [142].

SCAPLO reads either the microscopic scattering cross section and its associated Legendre

coefficients from the GRUBA [76] master library or the macroscopic scattering cross sections

from the SIGMN [99, 100] data block. For the GRUBA reading the cross sections and distribu-

tions can be interpolated for the desired temperature in the same way as the group constant

module GRUCAL [93] performs this task.

The angular distribution is reconstructed for the truncated Legendre order L with help

of the common definition of the Legendre expansion of the scattering cross section [19, 128].

The Legendre scattering coefficient σlgg′ in eq. (B.1) is the product of the scalar scattering

cross section and the Legendre coefficient for the secondary out-scatter energy group flgg′ .

The latter is normalized to unity and given temperature-dependent e.g. for scattering with

chemical binding effects. The angular secondary neutron distribution is calculated as a

function of the scattering cosine µ = cos θ with θ the polar scattering angle ((B.2) and

(B.3)). The reconstruction is carried out on a fine scattering cosine grid with ∆µ = 0.01 in

the usual [−1, 1] interval, which denotes the polar angle range from backward to forward

peaked scattering.

σlgg′ = σg flgg′ (B.1)

σgg′(µ) ≈
L∑

l=0

(2 l + 1)σlgg′ Pl(µ) (B.2)

σg(µ) ≈
L∑

l=0

(2 l + 1)Pl(µ)
∑

g′
σlgg′ (B.3)

B.2.2 KANISN

The standard KANEXT module WEKCPM [101] for thermal cell calculations originates from the

British WIMS [72] code system and was introduced for Tight Lattice Light Water Reactor

(TLLWR) investigations [73]. It is based on a one-dimensional first collision probability

method with transport correction for the total cross section and isotropic scattering.
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In view of a lacking transport method based cell module with anisotropic scattering the

new module KANISN was implemented in the KANEXT code system. It can be called either as

independent module or automatically in the cross section generation sequence KARBUS [92].

It stems from the well-known one-dimensional discrete ordinates transport code ANISN [143]

given in the latest version of the DOORS [144] package. Most of the relevant functionality

can be accessed by a KANEXT input data block.

In production runs a regular input file is automatically created including the cross

sections in a scratch file. When running in debug mode, this input file is kept after the

module run and can be directly used in subsequent stand-alone ANISN calculations. Since

the quadrature sets are part of the input in DOORS codes, the arbitrary quadrature order

generation subroutine doq of the SCALE6/XSDRN [107] code was added. The original ANISN

code was slightly changed to generally use double precision variables and to store the

neutron flux in the KANEXT specific data block.

For a code-to-code validation with other one-dimensional codes the pin cell of section 3.3

was subject to kinf calculations with exactly the same cross sections as input (fig. B.1).

The kinf evaluations were rigorously performed for quadrature orders from 2 to 16 and

for truncated Legendre orders from 0 to 5. Obviously, the combination of quadrature and

Legendre order are sometimes invalid. A known rule tells, the higher the Legendre order,

the higher must be the quadrature order to correctly integrate the Legendre functions [63].

Moreover, quadrature order lower than S4 are typically not used and S8 can be seen as

a standard. So looking at quadrature order S8, it is seen that the first Legendre order is

required and higher orders do not contribute to the eigenvalue result.

B.2.3 GRUCAL

The module GRUCAL [93] provides effective multigroup cross sections in the KANEXT specific

SIGMN data block [99]. It reads microscopic cross sections from the KANEXT master library,

which is provided in the GRUBA [76] format. The concept for the flexible group constant

generation is rather unique, since the cross section types are not hard-coded but can be freely

defined in the so-called Formula Definition File (FDF). The definition comprises the part of

the cross section to be read from the master library, the operation to be accomplished after

reading, and the successive use of the obtained result in further definitions. Module GRUCAL

knows about 50 implemented formulas e.g. basic arithmetic operations, interpolation, etc.,

which can be associated with the calculation of one cross section (part). An example is

given later on. Thus, to make a KANEXT job reproducible, the FDF file name and version

must be given in addition to the library name and version. In section B.2.3.1 the FDF

FENDFJEFv2 is printed. It was written from scratch for this work, in order to consider the

extended list of cross section types, which have been introduced during the development of

the NJOYPROC B.2.3.2 code.
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Figure B.1: Comparison of infinite multiplication constants achieved with four different
one-dimensional neutron transport codes

B.2.3.1 The Formula Definition File

The German print-out of the current FENDFJEFv2 FDF file in figures B.2 to B.6 is

produced by activating the FORMELN debug option of module GRUCAL. This FDF can be used

with master libraries generated by the recent NJOYPROC code of version 19. Conditional

statements have been introduced for cases, where libraries contain different data items e.g.

6 or 8 time groups of delayed neutrons in ENDF/B VII.0 or JEFF 3.1, respectively. The

FDF definitions are generally independent of the energy group structure. In the print-out

the meaning of the variables used are defined in the header. The cross section type specific

list underneath contains the basic classification (scalar or vector type cross section), formula

used, German description of the action, and origin and conditions of the data (read from

library or use calculated value). A detailed description of the interpolation for self-shielding

and temperature effects are given by Kiefhaber and Ott [145] and Broeders [73]. In this

summary only the newly introduced formalisms and types are mentioned. The parentheses

are such that "()" denotes the ENDF-6 [75] MT reaction number and "[]" denotes the KANEXT

literal cross section name as printed.

• The capture cross section σc [SCAPT] is the sum of the self-shielded σn,γ (102)

[SCPT1] cross section and the sum of the "disappearance" reaction σn,α , σn,d , σn,t ,

. . . (MF3MT{103,. . . ,117}) [SDISA]

• Additional to the inelastic scattering cross section σi [SINSC], which is the sum
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over all discrete levels and continuum reactions (MF3MT{51-91}), another bunch

of combined inelastic and other particle emitting reaction is summed to the "quasi-

inelastic" cross section (MF3MT{22,23,28,29,32-36,44,45}) [SQINL] and added to

obtain the total inelastic cross section σi [SI]

• The σn,2n [SN2N], σn,3n [SN3N] are the sum of the pure reaction and all combined

multiplying scatter-like reactions with other particle emitting reactions; σn,2n is the

sum of (MF3MT{11,16,24,30,41}), σn,3n is the sum of (MF3MT{17,25,42}); σn,2n
[SN2N], σn,3n [SN3N], σn,4n [SN4N] and σn,xn [SNXN] are summed to the intermediate

cross section [SMULT]

• The total cross section [STOT] is calculated according to the definition in the FDF

of the self-shielded reactions σc [SCAPT], σf [SFISS], σe [SE] and the σi [SI] and

the multiplicity scattering-like reactions [SMULT]

• The available energy-angle transfer data of (MF{4,5,6}) is kept and summed to the to-

tal transfer matrix [SMTOT{0,. . . ,5}]; these are the matrices of σe [SME{0,. . . ,5}], σi
[SMI{0,. . . ,5}] and [SMQI{0,. . . ,5}], the multiplicity reactions σn,2n [SM2N{0,. . . ,5}],

σn,3n [SM3N{0,. . . ,5}], σn,4n [SM4N{0,. . . ,5}] and σn,xn [SMXN{0,. . . ,5}] with the

Legendre coefficients of order 0 to 5

• The delayed neutron time group variables are [CHID{1,. . . ,{6,8}}] for delayed neutron

emission spectra (MF5MT455), [DLAM{1,. . . ,{6,8}}] for the delayed neutron time

group decay constants (MF1MT455), [NUD{1,. . . ,{6,8}}] for the delayed neutron

yields constructed from (MF1MT455) and (MF5MT455) and [BETA{1,. . . ,{6,8}}]

for the product of the delayed neutron yields [NUD{1,. . . ,{6,8}}] and the effective

fission cross section [SFISS]

• The average cosine for elastic scattering [MUEL] of a material becomes temperature-

dependent, if the scattering matrices [SME{0,. . . ,5}] are temperature-dependent due

to the use of the NJOY [23] module THERMR; a factor [FMUEL] interpolated for the

desired temperature is introduced to be applied on the basic scattering cosine

B.2.3.2 NJOYPROC

The role of the program NJOYPROC in the generation of the microscopic multigroup master

libraries is outlined in section 3.2. It is the main conversion tool from the NJOY output into

the GRUBA format and was received from the original author C. H. M. Broeders in version 5.

During the continuous development the version number 19 was achieved.

It consists essentially of three parts:
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1BERECHNUNGSVORSCHRIFTEN QUERSCHNITTSTYPEN

TZ          TEILCHENZAHL DES MATERIALS IN DER MISCHUNG
SUM(K)<...> SUMME UEBER K VON ...
E           MITTLERE ENERGIE DER GRUPPE
DE(L)       ENERGIEINTERVALL DER STUETZPUNKTE
U           LETHARGIE DER MITTLEREN ENERGIE DER GRUPPE
DU          DIFFERENZ DER LETHARGIEN DER GRUPPENGRENZEN
STW(L)      SIGMA TOTAL ZUR WICHTUNG MIT STOTW
L           STUETZPUNKTINDEX
G           BETRACHTETE GRUPPE G
H           EINSTREUGRUPPE H
(G-H)       STREUWERT AUS GRUPPE G NACH GRUPPE H
N           ANZAHL DATEN
K           VERARBEITUNGSKENNZIFFER
MAT.H2      FALLS ALS MATERIAL WASSERSTOFF VORLIEGT
DIFF-RECH.  NACHFOLGENDE DIFFUSIONSRECHNUNG
P1-RECH.    NACHFOLGENDE P1-RECHNUNG
SN-RECH.    NACHFOLGENDE SN-RECHNUNG
H2SONDER    WASSERSTOFFSONDERBEHANDLUNG

FCAPT     SKALAR                                       FORMEL  1 

          BERECHNUNG F-FAKTOR MIT FCAPT
          FCAPT     VON GRUBA  MIT  N.GE.1 

FFISS     SKALAR                                       FORMEL  1 

          BERECHNUNG F-FAKTOR MIT FFISS
          FFISS     VON GRUBA  MIT  N.GE.1 

FELSC     SKALAR                                       FORMEL  1 

          BERECHNUNG F-FAKTOR MIT FELSC
          FELSC     VON GRUBA  MIT  N.GE.1 

FMUEL     SKALAR                                       FORMEL  1 

          BERECHNUNG F-FAKTOR MIT FMUEL
          FMUEL     VON GRUBA  MIT  N.GE.1 

SFISS     SKALAR  STANDARD                             FORMEL  3 

          TZ*SFISS   *FFISS
          SFISS     VON GRUBA  MIT  N.EQ.1 
          FFISS     AUS DATEN  MIT  N.EQ.1 

SE        SKALAR  STANDARD                             FORMEL  3 

          TZ*SELSC   *FELSC
          SELSC     VON GRUBA  MIT  N.EQ.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

MUEL      SKALAR                                       FORMEL 19 

          MUEL    *FMUEL
          MUEL      VON GRUBA  MIT  N.EQ.1 
          FMUEL     AUS DATEN  MIT  N.EQ.1 

SIH       SKALAR                                       FORMEL  2 

          TZ*SINSC
          SINSC     VON GRUBA  MIT  N.EQ.1 

SCPT1     SKALAR                                       FORMEL  3 

          TZ*SCAPT   *FCAPT
          SCAPT     VON GRUBA  MIT  N.EQ.1 
          FCAPT     AUS DATEN  MIT  N.EQ.1 

SDISA     SKALAR                                       FORMEL  2 

          TZ*SDISA
          SDISA     VON GRUBA  MIT  N.EQ.1 

SCAPT     SKALAR  STANDARD                             FORMEL 20 

          SCPT1   +SDISA
          SCPT1     AUS DATEN  MIT  N.EQ.1 
          SDISA     AUS DATEN  MIT  N.EQ.1 

SN2N      SKALAR  STANDARD                             FORMEL  2 

          TZ*SN2N
          SN2N      VON GRUBA  MIT  N.EQ.1 

SN3N      SKALAR  STANDARD                             FORMEL  2 

          TZ*SN3N
          SN3N      VON GRUBA  MIT  N.EQ.1 

SN4N      SKALAR  STANDARD                             FORMEL  2 

          TZ*SN4N
          SN4N      VON GRUBA  MIT  N.EQ.1 

SNXN      SKALAR  STANDARD                             FORMEL  2 

          TZ*SNXN
          SNXN      VON GRUBA  MIT  N.EQ.1 

SQINL     SKALAR  STANDARD                             FORMEL  2 

          TZ*SQINL
          SQINL     VON GRUBA  MIT  N.EQ.1 

SI        SKALAR  STANDARD                             FORMEL 20 

          SIH     +SQINL
          SIH       AUS DATEN  MIT  N,K BELIEBIG 
          SQINL     AUS DATEN  MIT  N,K BELIEBIG 

SMULT     SKALAR                                       FORMEL 20 

          SNXN    +SN4N    +SN3N    +SN2N
          SNXN      AUS DATEN  MIT  N,K BELIEBIG 
          SN4N      AUS DATEN  MIT  N,K BELIEBIG 
          SN3N      AUS DATEN  MIT  N,K BELIEBIG 
          SN2N      AUS DATEN  MIT  N,K BELIEBIG 

STOT      SKALAR  STANDARD                             FORMEL 20 

          SI      +SMULT   +SE      +SCAPT   +SFISS
          SI        AUS DATEN  MIT  N,K BELIEBIG 
          SMULT     AUS DATEN  MIT  N,K BELIEBIG 
          SE        AUS DATEN  MIT  N,K BELIEBIG 
          SCAPT     AUS DATEN  MIT  N,K BELIEBIG 
          SFISS     AUS DATEN  MIT  N,K BELIEBIG 

P0ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P0EIK
          P0EIK     VON GRUBA  MIT  N.GE.1 

P1ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P1EIK
          P1EIK     VON GRUBA  MIT  N.GE.1 

P2ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P2EIK
          P2EIK     VON GRUBA  MIT  N.GE.1 

P3ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P3EIK
          P3EIK     VON GRUBA  MIT  N.GE.1 

P4ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P4EIK
          P4EIK     VON GRUBA  MIT  N.GE.1 

P5ET      VEKTOR                                       FORMEL 52 

          TEMPERATUR-INTERPOLATION P5EIK
          P5EIK     VON GRUBA  MIT  N.GE.1 

SME0      VEKTOR  STANDARD                             FORMEL 13 

          TZ*SELSC   *FELSC   *P0ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P0ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

SME1      VEKTOR                                       FORMEL 13 

          TZ*SELSC   *FELSC   *P1ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P1ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

SME2      VEKTOR                                       FORMEL 13 

          TZ*SELSC   *FELSC   *P2ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P2ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

SME3      VEKTOR                                       FORMEL 13 

          TZ*SELSC   *FELSC   *P3ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P3ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

SME4      VEKTOR                                       FORMEL 13 

          TZ*SELSC   *FELSC   *P4ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P4ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

SME5      VEKTOR                                       FORMEL 13 

          TZ*SELSC   *FELSC   *P5ET    (G-H)
          SELSC     VON GRUBA  MIT  N.EQ.1 
          P5ET      AUS DATEN  MIT  N.GE.1 
          FELSC     AUS DATEN  MIT  N.EQ.1 

Figure B.2: Formula definition file (page 1)
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SMI0      VEKTOR  STANDARD                             FORMEL 10 

          TZ*SINSC   *P0IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P0IIK     VON GRUBA  MIT  N.GE.1 

SMI1      VEKTOR                                       FORMEL 10 

          TZ*SINSC   *P1IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P1IIK     VON GRUBA  MIT  N.GE.1 

SMI2      VEKTOR                                       FORMEL 10 

          TZ*SINSC   *P2IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P2IIK     VON GRUBA  MIT  N.GE.1 

SMI3      VEKTOR                                       FORMEL 10 

          TZ*SINSC   *P3IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P3IIK     VON GRUBA  MIT  N.GE.1 

SMI4      VEKTOR                                       FORMEL 10 

          TZ*SINSC   *P4IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P4IIK     VON GRUBA  MIT  N.GE.1 

SMI5      VEKTOR                                       FORMEL 10 

          TZ*SINSC   *P5IIK   (G-H)
          SINSC     VON GRUBA  MIT  N.EQ.1 
          P5IIK     VON GRUBA  MIT  N.GE.1 

SMQI0     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P0QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P0QIL     VON GRUBA  MIT  N.GE.1 

SMQI1     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P1QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P1QIL     VON GRUBA  MIT  N.GE.1 

SMQI2     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P2QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P2QIL     VON GRUBA  MIT  N.GE.1 

SMQI3     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P3QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P3QIL     VON GRUBA  MIT  N.GE.1 

SMQI4     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P4QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P4QIL     VON GRUBA  MIT  N.GE.1 

SMQI5     VEKTOR                                       FORMEL 10 

          TZ*SQINL   *P5QIL   (G-H)
          SQINL     VON GRUBA  MIT  N.EQ.1 
          P5QIL     VON GRUBA  MIT  N.GE.1 

SM2N0     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P0NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P0NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM2N1     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P1NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P1NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM2N2     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P2NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P2NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM2N3     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P3NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P3NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM2N4     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P4NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P4NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM2N5     VEKTOR                                       FORMEL 13 

          TZ*SN2N    *MULT2   *P5NIK   (G-H)
          SN2N      VON GRUBA  MIT  N,K BELIEBIG 
          P5NIK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT2     VON GRUBA  MIT  N,K BELIEBIG 

SM3N0     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P03IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P03IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM3N1     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P13IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P13IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM3N2     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P23IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P23IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM3N3     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P33IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P33IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM3N4     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P43IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P43IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM3N5     VEKTOR                                       FORMEL 13 

          TZ*SN3N    *MULT3   *P53IK   (G-H)
          SN3N      VON GRUBA  MIT  N,K BELIEBIG 
          P53IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT3     VON GRUBA  MIT  N,K BELIEBIG 

SM4N0     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P04IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P04IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SM4N1     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P14IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P14IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SM4N2     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P24IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P24IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SM4N3     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P34IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P34IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SM4N4     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P44IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P44IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SM4N5     VEKTOR                                       FORMEL 13 

          TZ*SN4N    *MULT4   *P54IK   (G-H)
          SN4N      VON GRUBA  MIT  N,K BELIEBIG 
          P54IK     VON GRUBA  MIT  N,K BELIEBIG 
          MULT4     VON GRUBA  MIT  N,K BELIEBIG 

SMXN0     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P0XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 

Figure B.3: Formula definition file (page 2)
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          P0XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SMXN1     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P1XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 
          P1XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SMXN2     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P2XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 
          P2XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SMXN3     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P3XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 
          P3XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SMXN4     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P4XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 
          P4XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SMXN5     VEKTOR                                       FORMEL 13 

          TZ*SNXN    *NUEX    *P5XIK   (G-H)
          SNXN      VON GRUBA  MIT  N,K BELIEBIG 
          P5XIK     VON GRUBA  MIT  N,K BELIEBIG 
          NUEX      VON GRUBA  MIT  N,K BELIEBIG 

SM1T0     VEKTOR                                       FORMEL 24 

          SMXN0   (G-H)+SM4N0   (G-H)+SM3N0   (G-H)
          SMXN0     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N0     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N0     AUS DATEN  MIT  N,K BELIEBIG 

SMMT0     VEKTOR                                       FORMEL 24 

          SM1T0   (G-H)+SM2N0   (G-H)+SMQI0   (G-H)
          SM1T0     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N0     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI0     AUS DATEN  MIT  N,K BELIEBIG 

SM1T1     VEKTOR                                       FORMEL 24 

          SMXN1   (G-H)+SM4N1   (G-H)+SM3N1   (G-H)
          SMXN1     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N1     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N1     AUS DATEN  MIT  N,K BELIEBIG 

SMMT1     VEKTOR                                       FORMEL 24 

          SM1T1   (G-H)+SM2N1   (G-H)+SMQI1   (G-H)
          SM1T1     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N1     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI1     AUS DATEN  MIT  N,K BELIEBIG 

SM1T2     VEKTOR                                       FORMEL 24 

          SMXN2   (G-H)+SM4N2   (G-H)+SM3N2   (G-H)
          SMXN2     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N2     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N2     AUS DATEN  MIT  N,K BELIEBIG 

SMMT2     VEKTOR                                       FORMEL 24 

          SM1T2   (G-H)+SM2N2   (G-H)+SMQI2   (G-H)
          SM1T2     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N2     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI2     AUS DATEN  MIT  N,K BELIEBIG 

SM1T3     VEKTOR                                       FORMEL 24 

          SMXN3   (G-H)+SM4N3   (G-H)+SM3N3   (G-H)
          SMXN3     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N3     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N3     AUS DATEN  MIT  N,K BELIEBIG 

SMMT3     VEKTOR                                       FORMEL 24 

          SM1T3   (G-H)+SM2N3   (G-H)+SMQI3   (G-H)
          SM1T3     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N3     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI3     AUS DATEN  MIT  N,K BELIEBIG 

SM1T4     VEKTOR                                       FORMEL 24 

          SMXN4   (G-H)+SM4N4   (G-H)+SM3N4   (G-H)
          SMXN4     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N4     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N4     AUS DATEN  MIT  N,K BELIEBIG 

SMMT4     VEKTOR                                       FORMEL 24 

          SM1T4   (G-H)+SM2N4   (G-H)+SMQI4   (G-H)
          SM1T4     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N4     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI4     AUS DATEN  MIT  N,K BELIEBIG 

SM1T5     VEKTOR                                       FORMEL 24 

          SMXN5   (G-H)+SM4N5   (G-H)+SM3N5   (G-H)
          SMXN5     AUS DATEN  MIT  N,K BELIEBIG 
          SM4N5     AUS DATEN  MIT  N,K BELIEBIG 
          SM3N5     AUS DATEN  MIT  N,K BELIEBIG 

SMMT5     VEKTOR                                       FORMEL 24 

          SM1T5   (G-H)+SM2N5   (G-H)+SMQI5   (G-H)
          SM1T5     AUS DATEN  MIT  N,K BELIEBIG 
          SM2N5     AUS DATEN  MIT  N,K BELIEBIG 
          SMQI5     AUS DATEN  MIT  N,K BELIEBIG 

SMTOT     VEKTOR  STANDARD                             FORMEL 24 

          SME0    (G-H)+SMI0    (G-H)+SMMT0   (G-H)
          SME0      AUS DATEN  MIT  N,K BELIEBIG 
          SMI0      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT0     AUS DATEN  MIT  N,K BELIEBIG 

SMT01     VEKTOR  STANDARD                             FORMEL 24 

          SME1    (G-H)+SMI1    (G-H)+SMMT1   (G-H)
          SME1      AUS DATEN  MIT  N,K BELIEBIG 
          SMI1      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT1     AUS DATEN  MIT  N,K BELIEBIG 

SMT02     VEKTOR  STANDARD                             FORMEL 24 

          SME2    (G-H)+SMI2    (G-H)+SMMT2   (G-H)
          SME2      AUS DATEN  MIT  N,K BELIEBIG 
          SMI2      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT2     AUS DATEN  MIT  N,K BELIEBIG 

SMT03     VEKTOR  STANDARD                             FORMEL 24 

          SME3    (G-H)+SMI3    (G-H)+SMMT3   (G-H)
          SME3      AUS DATEN  MIT  N,K BELIEBIG 
          SMI3      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT3     AUS DATEN  MIT  N,K BELIEBIG 

SMT04     VEKTOR  STANDARD                             FORMEL 24 

          SME4    (G-H)+SMI4    (G-H)+SMMT4   (G-H)
          SME4      AUS DATEN  MIT  N,K BELIEBIG 
          SMI4      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT4     AUS DATEN  MIT  N,K BELIEBIG 

SMT05     VEKTOR  STANDARD                             FORMEL 24 

          SME5    (G-H)+SMI5    (G-H)+SMMT5   (G-H)
          SME5      AUS DATEN  MIT  N,K BELIEBIG 
          SMI5      AUS DATEN  MIT  N,K BELIEBIG 
          SMMT5     AUS DATEN  MIT  N,K BELIEBIG 

NU        SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUE
          NUE       VON GRUBA  MIT  N.EQ.1 

NUP       SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUEP
          NUEP      VON GRUBA  MIT  N.EQ.1 

NUD1      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED1
          NUED1     VON GRUBA  MIT  N.EQ.1 

NUD2      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED2
          NUED2     VON GRUBA  MIT  N.EQ.1 

NUD3      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED3
          NUED3     VON GRUBA  MIT  N.EQ.1 

NUD4      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED4
          NUED4     VON GRUBA  MIT  N.EQ.1 

NUD5      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED5
          NUED5     VON GRUBA  MIT  N.EQ.1 

NUD6      SKALAR                                       FORMEL 22 

          UEBERNEHMEN NUED6

Figure B.4: Formula definition file (page 3)
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          NUED6     VON GRUBA  MIT  N.EQ.1 

NUSF      SKALAR  STANDARD                             FORMEL 19 

          NU      *SFISS
          NU        AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

NUSFP     SKALAR                                       FORMEL 19 

          NUP     *SFISS
          NUP       AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA1     SKALAR                                       FORMEL 19 

          NUD1    *SFISS
          NUD1      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA2     SKALAR                                       FORMEL 19 

          NUD2    *SFISS
          NUD2      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA3     SKALAR                                       FORMEL 19 

          NUD3    *SFISS
          NUD3      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA4     SKALAR                                       FORMEL 19 

          NUD4    *SFISS
          NUD4      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA5     SKALAR                                       FORMEL 19 

          NUD5    *SFISS
          NUD5      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

BETA6     SKALAR                                       FORMEL 19 

          NUD6    *SFISS
          NUD6      AUS DATEN  MIT  N.EQ.1 
          SFISS     AUS DATEN  MIT  N.EQ.1 

CHI       SKALAR  STANDARD                             FORMEL 35 

          UEBERNEHMEN CHI
          GEWICHT*CHI      FUER MATERIALGEWICHTETES CHI
          CHI       VON GRUBA  MIT  N.EQ.1 

SM2NR     VEKTOR                                       FORMEL 10 

          TZ*SN2N    *P0NIK   (G-H)
          SN2N      VON GRUBA  MIT  N.EQ.1 
          P0NIK     VON GRUBA  MIT  N.GE.1 

SM3NR     VEKTOR                                       FORMEL 10 

          TZ*SN3N    *P03IK   (G-H)
          SN3N      VON GRUBA  MIT  N.EQ.1 
          P03IK     VON GRUBA  MIT  N.GE.1 

SM4NR     VEKTOR                                       FORMEL 10 

          TZ*SN4N    *P04IK   (G-H)
          SN4N      VON GRUBA  MIT  N.EQ.1 
          P04IK     VON GRUBA  MIT  N.GE.1 

SMXNR     VEKTOR                                       FORMEL 10 

          TZ*SNXN    *P0XIK   (G-H)
          SNXN      VON GRUBA  MIT  N.EQ.1 
          P0XIK     VON GRUBA  MIT  N.GE.1 

SEREM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SME0    (G-H)>
          SME0      AUS DATEN  MIT  N.GE.1 

SIREM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SMI0    (G-H)>
          SMI0      AUS DATEN  MIT  N.GE.1 

SIQRM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SMQI0   (G-H)>
          SMQI0     AUS DATEN  MIT  N.GE.1 

S2NRM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SM2NR   (G-H)>
          SM2NR     AUS DATEN  MIT  N.GE.1 

S3NRM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SM3NR   (G-H)>
          SM3NR     AUS DATEN  MIT  N.GE.1 

S4NRM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SM4NR   (G-H)>
          SM4NR     AUS DATEN  MIT  N.GE.1 

SXNRM     SKALAR                                       FORMEL 53 

          SUM(H.NE.G)<SMXNR   (G-H)>
          SMXNR     AUS DATEN  MIT  N.GE.1 

SREM1     SKALAR                                       FORMEL 20 

          SXNRM   +S4NRM   +S3NRM   +S2NRM
          SXNRM     AUS DATEN  MIT  N,K BELIEBIG 
          S4NRM     AUS DATEN  MIT  N,K BELIEBIG 
          S3NRM     AUS DATEN  MIT  N,K BELIEBIG 
          S2NRM     AUS DATEN  MIT  N,K BELIEBIG 

SREM2     SKALAR                                       FORMEL 20 

          SIQRM   +SIREM   +SEREM
          SIQRM     AUS DATEN  MIT  N,K BELIEBIG 
          SIREM     AUS DATEN  MIT  N,K BELIEBIG 
          SEREM     AUS DATEN  MIT  N,K BELIEBIG 

SREM      SKALAR  STANDARD                             FORMEL 20 

          SCAPT   +SFISS   +SREM1   +SREM2
          SCAPT     AUS DATEN  MIT  N,K BELIEBIG 
          SFISS     AUS DATEN  MIT  N,K BELIEBIG 
          SREM1     AUS DATEN  MIT  N,K BELIEBIG 
          SREM2     AUS DATEN  MIT  N,K BELIEBIG 

SEM1      SKALAR                                       FORMEL 19 

          MUEL    *SE
          MUEL      AUS DATEN  MIT  N.EQ.1 
          SE        AUS DATEN  MIT  N.EQ.1 

SIMI      SKALAR                                       FORMEL 19 

          MUIL    *SI
          MUIL      VON GRUBA  MIT  N.EQ.1 
          SI        AUS DATEN  MIT  N.EQ.1 

SQMI      SKALAR                                       FORMEL 19 

          MUILQ   *SQINL
          MUILQ     VON GRUBA  MIT  N.EQ.1 
          SQINL     AUS DATEN  MIT  N.EQ.1 

S2MI      SKALAR                                       FORMEL 19 

          MUN2N   *SN2N
          MUN2N     VON GRUBA  MIT  N.EQ.1 
          SN2N      AUS DATEN  MIT  N.EQ.1 

S3MI      SKALAR                                       FORMEL 19 

          MUN3N   *SN3N
          MUN3N     VON GRUBA  MIT  N.EQ.1 
          SN3N      AUS DATEN  MIT  N.EQ.1 

S4MI      SKALAR                                       FORMEL 19 

          MUN4N   *SN4N
          MUN4N     VON GRUBA  MIT  N.EQ.1 
          SN4N      AUS DATEN  MIT  N.EQ.1 

SXMI      SKALAR                                       FORMEL 19 

          MUNXN   *SNXN
          MUNXN     VON GRUBA  MIT  N.EQ.1 
          SNXN      AUS DATEN  MIT  N.EQ.1 

SH11      SKALAR                                       FORMEL 20 

          SXMI    +S4MI    +S3MI    +S2MI    +SQMI
          SXMI      AUS DATEN  MIT  N,K BELIEBIG 
          S4MI      AUS DATEN  MIT  N,K BELIEBIG 
          S3MI      AUS DATEN  MIT  N,K BELIEBIG 
          S2MI      AUS DATEN  MIT  N,K BELIEBIG 
          SQMI      AUS DATEN  MIT  N,K BELIEBIG 

SH1       SKALAR                                       FORMEL 20 

          SEM1    +SIMI    +SQMI    +SH11
          SEM1      AUS DATEN  MIT  N,K BELIEBIG 
          SIMI      AUS DATEN  MIT  N,K BELIEBIG 
          SQMI      AUS DATEN  MIT  N,K BELIEBIG 
          SH11      AUS DATEN  MIT  N,K BELIEBIG 

STR       SKALAR  STANDARD                             FORMEL 21 

          STOT    -SH1
          STOT      AUS DATEN  MIT  N.EQ.1 
          SH1       AUS DATEN  MIT  N,K BELIEBIG 

Figure B.5: Formula definition file (page 4)
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STRTR     SKALAR  STANDARD                             FORMEL 22 

          UEBERNEHMEN STR
          STR       AUS DATEN  MIT  N.EQ.1 

DIFKO     SKALAR  STANDARD                             FORMEL 23 

          1./ (3.*STR     )
          STR       AUS DATEN  MIT  N.EQ.1 

XSONE     SKALAR                                       FORMEL  2 

          TZ*XSONE
          XSONE     VON GRUBA  MIT  N.EQ.1 

EHIGH     SKALAR  STANDARD                             FORMEL 34 

          UEBERNEHMEN EHIGH    FUER GRUPPENSATZ
          EHIGH     VON GRUBA  MIT  N,K BELIEBIG 

1/V       SKALAR  STANDARD                             FORMEL 34 

          UEBERNEHMEN 1/V      FUER GRUPPENSATZ
          1/V       VON GRUBA  MIT  N,K BELIEBIG 

Figure B.6: Formula definition file (page 5)
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1. The interface file reading routines rmatxs and dlayxs for reading the NJOY specific

formats MATXS and DLAYXS [23], respectively

2. The calculation routines for preparation of the GRUBA cross section data types, e.g.

self-shielding and temperature factors in routine cffac, cumulated reaction cross

section in e.g. routine profis, delayed neutron time group data, etc.

3. The GRUBA format writing routine wrdata

The first versions of NJOYPROC could only handle the nscat data type option, which

addresses the usual scalar and vector type neutron reaction data, but not the thermal

scattering data produced by module THERMR of NJOY. The thermal scattering data was

obtained by a complicated procedure involving the MILER code [146] for reading the module

GROUPR output file in the GENDF format and the utility code RAMPX [147] to read the AMPX

formatted output of MILER and convert it into the GRUBA format. This procedure was finally

abandoned, since the MATXS format provides the option ntherm, so that one conversion step

could be skipped and replaced by the NJOY way of processing.

The NJOYPROC code was extended to read the thermal data file. During the imple-

mentation it was observed that the code RAMPX erroneously calculated the temperature

interpolation factors without considering the correct base cross section. Moreover, the total

scattering cross section was only constructed from one of the possible two MT numbers.

NJOY produces for certain materials one MT evaluation for the inelastic scattering part

(this is down-, self- and upscatter) and another for the elastic scattering (pure self-scatter)

part [23]. For the hydrogen based compounds like H2O, D2O, CH2 only the inelastic com-

ponent is given. For materials with crystal-like structure, a coherent elastic component like

in graphite or beryllium(-oxide) or an incoherent elastic component as in zirconium-hydride

has to be evaluated. The according routines stsmth, addth, adsmth, wrgrth in NJOYPROC store

the thermal matrices in arrays, sum the components and calculate the scalar temperature

dependent total elastic scattering cross section.

Additional modifications and corrections are:

• For the total neutron yield the prompt only fission neutron production matrices were

evaluated; this leads to an energy integrated total neutron yield reduced by about

1630pcm with 235
92U and hence to reduced kinf and keff results; the resulting behavior

is very much comparable with the MCNP4 code [148], where by default only prompt

neutrons are produced and the total neutron yield is enabled with the TOTNU card

• The blocking feature of the MATXS format was implemented; before, the full bandwidth

of data (scalar reaction or vector type) had to be written in one chunk; as a work-

around for large energy group numbers the MATXSR source code of NJOY (variable

maxb) had to be modified to keep all the data in one array
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• The subroutine fmband, which determines the range of out-scatter groups (first and

last out-scatter energy group) for a given energy group, started with the search for

the first occurrence of a zero cross section from the lower numbers in direction to

the thermal energies; this leads to the undesired behavior to skip additional data in

discrete scatter reactions like the inelastic scattering after the first zero cross section;

consequently, the search direction was reverted

• The code was extended to the 350 energy groups library development and the enlarged

number of delayed neutron time groups/families

B.2.4 CRGIP

The new module CRGIP [119] provides multigroup cross sections in the GIP format [149]

needed by the discrete ordinate transport code DORT and TORT [2, 123]. The higher order

scattering cross sections have to be added as "pseudo" materials after the zeroth order

material, which contains also the scalar cross sections. It requires the macroscopic cross

section data block SIGMN to be delivered, from which automatically all needed dimensions

and variables are deduced.

The following summarized features are available:

• Automatic handling of mixture cross sections in the SIGMN data block

• Adapts energy group structure and scattering order from the SIGMN data block

• The (2 l+ 1) normalization factor is multiplied to the scattering transfer cross section

• Data for direct and adjoint ordering of cross sections are written to different files

• Extended print options to inspect the cross section output

• Print of cross section control parameters as needed in TORT for input array 64$$

• Several keyword based inputs are available to selectively define desired mixtures,

scattering order, real or adjoint cross sections

B.2.5 CNMTAB

The new module CNMTAB provides multigroup cross sections in the NEMTAB format as defined

e.g. in the PWR main steam line break (MSLB) benchmark report [150]. This format is

required by TORT-TD. In the general case, for every energy group the cross section set is

written for every combination of fuel temperature, moderator density, Boron concentration

and moderator temperature in an ASCII file. The sets comprise the usual total, fission

production and scattering cross sections and additionally constants for time-dependent

calculations such as delayed neutron fraction, decay constants, etc.
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The features are very much comparable to the module CRGIP (see appendix B.2.4) except

for the fact that the adjoint ordering functionality is abandoned, because TORT-TD can apply

an internal adjoint ordering on input trigger for the stationary, zeroth time step calculation.

B.2.6 KSAUDI

The module KSAUDI is mainly a collection of tools and procedures for unusual tasks. One of

the functions is to provide real and adjoint flux from external core solver to the perturbation

theory module AUDI3 [151]. Since reading of the particular flux and geometry file formats

of TORT and PARTISN were already available, an additional new subroutine was implemented

to calculate the effective delayed neutron fraction βeff and the mean neutron generation

time Λ for a given geometry.

The multigroup form of the βeff equation (2.36) is implemented in the form of eq. (B.4).

Analog, the mean generation time Λ equation (2.38) reads in multigroup form as eq. (B.5).

A similar notation can be found in the manual of the diffusion code CITATION [152].

βeff =
∑

j

βeffj =
1

F

∑

j

∑

n

Vn
∑

g

∑

i

χijng φ
†
ng

∑

g′
νijng′ Σ

i
fng′ φng′ (B.4)

Λ =
1

F

∑

n

∑

g

Vn
vng

φ†ng φng (B.5)

F =
∑

n

Vn
∑

g

χng φ
†
ng

∑

g′
νng′ Σfng′ φng′ (B.6)
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Appendix C

Other Codes

C.1 Utility Codes

C.1.1 MKSRC

The program MKSRC reads a neutron distribution continuous in energy and angle and

determines the energy-group-wise spherical harmonics coefficients for the use in deterministic

neutron transport codes.

The distributions of several accelerator based neutron sources are tabulated by Drosg [153]

and implemented in the program DROSG-2000 [127]. MKSRC reads the slightly modified output

of the subprogram NEUYIE of DROSG-2000, i.e. the neutron angular and energy distribution,

and the energy group boundaries for which the coefficients are to be determined and passes

this information to the lgndre subroutine. The routine investigates, which angle interval

belongs to the given energy interval, and calls the spharm subroutine for the integration of

the spherical harmonics coefficients according to equation (4.12). Trapezoidal integration is

used for both the azimuthal and the polar integral. The recurrence relation of (4.10) is

taken from the "Numerical recipes" collection [154].

For every energy group the original data set is then reconstructed with eq. (4.6) and

written in an ASCII file suitable for plotting.
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Appendix D

Additional Results

D.1 Time-Dependent Calculation

Figure D.1: Net neutron current between core and reflector decomposed in out- and inflow
for the (d,d) neutron source and 216 fuel rods configuration
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Index
Absorption, 6, 16, 44, 67, 90

Boundary condition, 7, 42, 47

periodic, 42

white, 42, 47

Buckling iteration, 46

Chebyshev extrapolation, 71, 81

Coarse mesh rebalance, 71

Coarse mesh rebalancing, 71

Codes, see Reactor physics pro-

grams

Criticality, see Nuclear reactor

core, criticality

Cross section, 3, 6, 8, 11, 12,

27, 29–34, 36, 38, 40,

41, 43, 44, 46, 47, 50–

52, 61, 64, 65, 78, 79,

90, 92, 95, 96, 138–141,

147–149

adjoint ordering, 148, 149

capture, 32, 47, 50–52, 140

Doppler broadening, 50

elastic scattering, 30, 32, 34,

35, 37, 38, 40, 50–52,

62, 90, 141, 147

angular distribution, 36,

41, 65, 138

chemical binding effects,

90, 95, 138, see inco-

herent, coherent

coherent, 38, 40, 147

differential, 6, 12, 64, 96,

138

downscattering, 30, 35,

37, 38

free gas, 32

incoherent, 34, 38, 147

upscattering, 35, 38, 62,

90, 147

fission, 8, 27, 32, 46, 47, 53,

54, 57–60, 78, 79, 82,

92, 141, 147, 148

delayed spectrum, see

Delayed neutron, emis-

sion spectra

delayed yield, see De-

layed neutron, yield

prompt spectrum, 8, 27,

46, 47, 53, 57–60, 82

steady-state spectrum,

57, 58

total yield, 54, 57, 147

homogenization, 3, 29, 30,

96

inelastic scattering, 6, 138,

140, 141, 148

macroscopic, 29, 43, 44, 50,

95, 96, 138, 148

microscopic, 3, 29–31, 34,

41, 44, 50, 138, 139

multigroup, 8, 31, 139, 141

scattering matrix, see trans-

fer

total, 11, 27, 46, 141, 148

transfer, 31–34, 38, 41, 141,

147, 148

transport, 46, 61, 138

Current, see Neutron, current

Dancoff factor, 44, 51

Decay constant, see Delayed neu-

tron, decay constant

Delayed neutron, 3, 6, 8, 15, 16,

19, 21–23, 26, 47, 53–

60, 68, 69, 71, 72, 78,

79, 81, 82, 91, 92, 95–

97, 140, 141, 147–149

abundance, 53, 81

decay constant, 21, 81, 141,

148

emission spectra, 16, 47, 53,

57–60, 71, 72, 81, 141

family, see time group

fraction, 3, 16, 19, 22, 23,

53–58, 68, 72, 78, 79,

91, 92, 95, 149

precursor, 6, 8, 15, 16, 19,

25, 26, 79, 81, 82, 97

balance equation, 6, 15,

25, 79

time group, 6, 54–58, 96,

140, 141, 147

yield, 54, 69, 79, 92

Differential scattering cross sec-

tion, see Cross section,

elastic scattering, dif-

ferential

Diffusion approximation, 12, 19,

20, 46, 88

calculation, 46

coefficient, 88

diffusion equation, see Neu-

tron, diffusion equa-

tion

length, 19, 20

monoenergetic, 12

Discrete ordinates, see Trans-

port approximation,

discrete ordinates

Doppler broadening, see Cross

section, Doppler

broadening

Eigenfunctions, 10, 13, 24

time eigenfunction, 10, 13,

24

Eigenvalues

criticality, see Neutron,

transport equation, ef-

fective multiplication

factor

time, see Neutron, trans-

port equation, time

eigenvalue

Energy group structure, 29, 30,

48, 51, 52, 60, 62–65,

67, 131, 133–137

coarse, 51, 52, 60, 62–65, 67

KANEXT, 133–137

WIMS, 29, 30, 48, 62, 131,

133

Error mode extrapolation, 71

Evaluated nuclear data file

(ENDF)

ENDF/B VI, 38

ENDF/B VI.6, 67
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Index

ENDF/B VI.8, 50

ENDF/B VII.0, 30, 32, 33,

47, 54–58, 60, 96, 140

JEFF 3.1, 30, 32, 33, 38, 42,

47, 50, 54–61, 63, 67,

79, 81, 96, 140

JEFF 3.1.1, 30, 32, 33, 96

Fast reactor, 1, 19, 29, 32, 44

File interface formats

AMPX, 147

DLAYXS, 31, 147

ENDF-6, 31, 96, 140

FLXMOM, 62, 72

GENDF, 147

GIP, 148

GRUBA, 31, 44, 50, 138, 139,

141, 147

MATXS, 31, 147

NEMTAB, 148

PENDF, 50

RMFLUX, 62

RTFLUX, 62

SIGMN, 44, 138, 139, 148

VARSCL, 62

VITAMIN-J, 30, 133

Fine spectrum calculation, 44,

49–52, see also Reac-

tor physics programs,

KANEXT, ULFISP

Fixed source, see Neutron, trans-

port equation, inhomo-

geneous

Fuel, 1, 3, 19, 33, 42, 47, 49, 56,

60, 61, 63, 78, 83, 96,

115, 121, 139

assembly, 33, 121

enrichment, 1, 19, 78, 83,

115

pin, 3, 33, 42, 47, 49, 56, 60,

61, 63, 96, 121, 139

Graphite, 1, 32, 33, 38–41, 62,

63, 65, 90, 92, 96, 115,

147

Group collapsing, 29, 30, 46, 49,

96

Homogenization, see Cross sec-

tion, homogenization

Legendre, 31, 35–38, 40, 41, 63–

65, 70, 72, 75, 96, 138,

139

associated polynomial, 75

expansion, 31, 36, 37, 40,

41, 96, 138

function, 41, 72, 139

order, 35, 38, 40, 41, 63–65,

70, 96, 139

Lethargy, 30, 42, 95, 133

Maxwell-Boltzmann distribution,

48, 90

Mean free path, 42, 66, 90

Modal synthesis, 24, 95

Moderating ratio, 20, 33

Neutron, 3, 5–9, 11–16, 18–20,

25–29, 38, 42, 43, 46,

53, 54, 57, 60, 61, 66,

67, 69–72, 78, 79, 81,

88–90, 97, 139

current, 81, 88–90, 97

diffusion equation, 11, 27,

29

energy spectrum, 18, 43,

see also Neutron, flux,

spectrum

fast, 19, 60, 66, 79

flux, 11–16, 67, 68, 91, 92,

149

adjoint, 11–16, 67, 68, 91,

92, 149

angular, 12, 13, 70, 71

scalar, 12, 61, 72

spectrum, 11, 53, 54

leakage, 6, 11, 46, 66, 67, 88

source, 5, 10, 17–20, 22–25,

30, 66, 67, 69, 73–79,

81–86, 88–90, 95, 96,

119, 123, 153

(d,d), 19, 66, 67, 73, 76,

77, 81–86, 89, 96, 119,

153

(d,t), 30, 66, 67, 73, 75–

78, 119

accelerator current, 17,

18

angular distribution, 73,

74

intensity, 17, 18, 73, 81,

88

period, 19, 22, 82, 88

pulsed, 5, 10, 17–20, 22–

25, 69, 78, 79, 81, 82,

86, 90, 95, 96, 123

streaming, 6, 11, 12, 90

transport equation, 3, 5, 6,

8–14, 16, 17, 20, 21, 23–

27, 29, 42, 43, 46, 50,

57, 60, 63, 66, 69–72,

78, 82, 83, 91–93, 95,

97, 139, 140

decay mode, 10, 21, 23,

95

delayed harmonics, 21

effective multiplication

factor, 8, 9, 12, 13, 17,

63, 83, 91

flat flux approximation,

50

fundamental mode, 16,

23, 24, 27, 82, 91–93,

97

homogeneous, 9, 13, 14,

16, 24–26, 60, 69, 71

infinite multiplication

factor, 43, 140

inhomogeneous, 3, 9, 13,

14, 20, 26, 60, 66, 71

prompt harmonics, see

Neutron, transport

equation, prompt

modes

prompt modes, 10, 11,

23, 24

time eigenvalue, 17, 24,

92, 95

time-dependent, 3, 5, 7,

15, 25, 27, 69

wave, 27, 28
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wavelength, 38

Nonreentrant surface, 7

Nuclear reactor core, 1–3, 5, 10,

65, 83–85, 87, 90, 97,

115, 122

criticality, 10, 65, 83–85,

122

subcriticality, 1–3, 5, 10, 84,

87, 90, 97, 115

Operator, 12

adjoint, 12

production, 12

transport, 12

Orthogonality, 14, 72

Perturbation theory, 3, 11, 14,

16, 149

Photoneutron reaction, 6

Polyethylene, 33–38, 41, 50, 62,

68, 90, 95, 96, 121, 122

Programs, see Reactor physics

programs

Quadrature, 41, 64, 65, 69, 71,

72, 85, 139

order, 41, 64, 65, 71, 85, 139

set, 41, 64, 69, 72, 139

Reaction rate, 19, 83–87, 91, 92,

95, 123

Reactivity determination, 21–24,

93, 97

area method, 21–24

Gozani, 23

Sjöstrand method, see Re-

activity determination,

area method

slope fit, 23, 24, 93, 97

Reactor kinetics, 10, 15–17, 21,

23–25, 27, 67–69, 79,

90, 91, 95

implicit time integration,

24, 25, 27, 69, 79, 95

multipoint reactor model,

90

parameters, 3, 16, 17, 19,

21–24, 67, 68, 90–93,

95, 97, 149

decay constant, 17, 23,

91, 93, 97

effective delayed neutron

fraction, 67, 68, 91, 93

mean generation time, 3,

16, 19, 23, 67, 68, 90,

92, 93, 95, 149

reactivity, 17, 21–24, 93

point reactor model, 10, 15–

17, 21, 23, 67, 68, 91,

95

Reactor physics programs

CINDER90, 55

CITATION, 149

DOORS, 69, 139

ANISN, 96, 139

DORT, 69, 71, 72, 148

TORT, 60–72, 74, 78, 81,

83, 96, 123, 148, 149

DORT-TD, 69

DROSG-2000, 73, 151

NEUYIE, 151

KANEXT, 3, 29, 31, 33, 35, 38,

40, 42, 44, 46, 47, 52,

54, 57, 61, 75, 95, 96,

121, 131, 133–140

AUDI3, 149

BUCITU, 46

CHICOR, 46, 47, 54, 57, 96

CNMTAB, 148

CRGIP, 61, 148, 149

DIFF0U, 46, 47

DLAYPM, 53, 96

GRUCAL, 44, 50, 138–140

GRUMA, 31

KANISN, 46–50, 138, 139

KARBUS, 44, 45, 50, 139

KSAUDI, 68, 92, 149

NDCALC, 44, 46

ONEHOM, 46

SCAPLO, 35, 138

SIGMUT, 46

TRANSX, 61

ULFISP, 47, 49, 50, 52, 53

WEKCPM, 46, 138

MCNP, 96

MCNP4, 147

MCNP5, 24, 42, 47

MCNPX, 24, 63, 67, 83

MILER, 147

MKSRC, 76, 151

NJOY, 8, 31, 32, 34, 38, 50,

57, 138, 141, 147

GROUPR, 31, 147

MATXSR, 147

THERMR, 32, 34, 38, 141,

147

NJOYPROC, 31, 139–141, 147

PARTISN, 25, 60–62, 64–66,

72, 74, 78, 96, 123, 149

PreDOORS, 71

RAMPX, 147

SCALE, 48, 50, 139

KENO, 50

XSDRN, 139

TIMEX, 25

TORT, 65

TORT-TD, 4, 25, 69–73, 78,

79, 81–86, 88, 91, 92,

96, 123, 124, 148, 149

TRANZIT, 25

WIMS, 29, 30, 33, 48, 62, 131–

133, 138

Reflector, 18, 20, 21, 23, 63, 65,

68, 83, 84, 88–90, 93,

97, 115, 119, 123

effect, 88–90, 93, 97

Resonance self-shielding, 44, 50,

52

fine flux calculation, see

Fine spectrum calcula-

tion

narrow resonance approxi-

mation, 44, 50, 52

Slowing down, 20, 21, 29, 30, 49,

50, 62, 87, 90, 95

equation, 49, 50

time, 90

Solid angle, 6, 11, 28, 69, 78

Spatial modes, see Neutron,

transport equation,

prompt modes

Spherical harmonics, 27, 69–78,
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96, 151

Subcriticality, see Nuclear reac-

tor core, subcriticality

Thermalization, 17, 78, 87, 90

Transport approximation, 25, 28,

41, 46, 47, 60, 61, 67,

69–72, 74, 78, 84, 85,

123, 139, 148

discrete ordinates, 25, 28,

41, 46, 47, 60, 61, 67,

69–72, 74, 78, 84, 85,

123, 139, 148

transport equation, see

Neutron, transport

equation

Transport correction, see Cross

section, transport

Unit cell, 29, 35, 36, 38, 42, 46,

68, 121, 123

Wigner-Seitz cell, 42, 44, 47, 121

Zero-dimensional calculation, 46

Zero-power reactor, 16, 24, 33,

82, 91
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