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Introduction 
The basis of all transient simulations for nuclear reactor cores is the reliable 
calculation of the power production. The local power distribution is generally 
calculated by solving the space, time, energy and angle dependent neutron flux 
equation known as Boltzmann equation. The computation of exact solutions of the 
Boltzmann equation is very time consuming. For practical numerical simulations 
approximated solutions are usually unavoidable [1]. 
In fast reactor technology it is until today standard to solve the neutron kinetics 
equations by separation of space and time either with the quasi-static method [2] or 
the point kinetics method [3], [4]. The aim of this work is the development of solution 
functions for approximations of the Boltzmann equation without space-time 
separation and independent of the in fast reactors short neutron generation time.  
The used mathematical method developed starting from the two variable expansion 
[5] or method of extension [6] is the multiple scale expansion [7].  
The time behavior of a nuclear system with delayed neutron production is mainly 
influenced by the very different time scales of the prompt and delayed neutron 
production which lead to the well known stiff time behavior of these systems. A 
principle technique for deriving asymptotic solutions that remain valid in the far field 
are multiple scale expansions [7], [5].  

Expansion Solution for the Point Kinetics Equation 
The demonstration of the principal usability of the method of multiple scale expansion 
for the development of approximation functions for a multiplying system with delayed 
neutron production is performed for the point kinetics equations. These equations 
show the typical stiff time behavior which will be treated by using the multiple scale 
expansion method.  
The development of the multi scale approximation functions will be started from the 
well-known point kinetics equations [8], [9] with 6 groups of delayed neutrons. 
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with  
n: neutron population 

: reactivity 
: mean neutron generation time 
i: delayed neutron fraction of group i 
i: precursor decay constant of group i 

ci: precursor concentration of group i 



The developed multi scale approximation functions for the neutron population n and 
the precursor concentrations cm for a reduced system with two groups of delayed 
neutrons are: [10], [11]  
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The following abbreviations are used for simplification:  
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Additionally definitions from the solution for one group of delayed neutrons are 
needed: 
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The constants D0, KB1 and KB2 have to be determined with help of the starting 
conditions or the previous time step.  

Calculations for the Approximation of the Point Kinetics 
Demonstration calculations for the developed multi scale approximation functions for 
the point kinetics equations [10], [11] were performed to evaluate the quality of the 
approximation. These calculations demonstrate the usability of the method of multiple 
scale expansion for developing approximation functions for the typical stiff time 
behavior of multiplying systems with delayed neutron production. Further on the 
excellent quality of the developed approximation functions is demonstrated and the 
possibility of approximating the point kinetics with 6 groups of delayed neutrons by 
two effective groups for an acceptable time period is shown.  
Finally the multi scale approximation functions are compared to the solution gained 
by the Kaganove [12] algorithm which is the today’s standard for solving the point 
kinetics equations in computer codes.   



Fig. 1 shows the comparison of the Kaganove solution for 6 groups of delayed 
neutrons with the results for the multi scale approximation functions for one and two 
groups of delayed neutrons. All shown calculations are performed in a FORTRAN 
code. The results agree very well, even for this very strong perturbation (ρ = 0.9 
$).The detailed analysis of the difference is shown in Fig. 2. The agreement between 
the results is very good. The difference for the relevant time period of 0.1 s up to 0.25 
s is about 1.5 ‰ up to 3.5 ‰. The size of the relevant time step is predetermined by 
the changes in the thermal hydraulics needed for feedback in transient calculations.  
The major difference in the usage of these two diverse approximation methods is the 
way to calculate the resulting neutron population at the desired time point. On the 
one hand the desired time point can be inserted directly into the multi scale functions 
on the other hand the calculation has to be carried out step by step until the desired 
time point is reached. A detailed comparison of the possible time gain has been 
performed [10], [11]. The time gained by using the multi scale functions instead of the 
Kaganove algorithm is at least a factor of 3 for a calculation of a relevant time period. 
The time gain is growing rapidly up to a factor of 350 and more depending on the 
kind of perturbation and the convergence criterion for the Kaganove algorithm. 

Limitations of the Multi Point Method 
The idea of using point kinetics for the representation of spatial problems was 
proposed by Avery [13] in the late 50ies. The approximation of spatial problems by 
calculating individual point kinetics for different regions of the core of a reactor was 
shortly reintroduced under the title multi point method [14]. Both methods are based 
on the spatial arranging of a number of independent regions each calculated 
independently by one extra set of point kinetic equations. The coupling between the 
different regions is time independent and mostly calculated out of the static solution. 
This method would give the ideal surrounding for using the very effective multi scale 
approximation functions for the calculation of each node independently. 
The results for calculations for one transient performed with differently sized regions 
are shown for the power trace in Fig. 3 and for the spatial distribution one second 
after the insertion of the perturbation in Fig. 4. The results for the relative power are 
very much dependent on the cut of the calculation regions used for the multi point 
method. On the one hand the power is drastically overestimated if the perturbed cell 
is calculated by an own kinetics equation as well as all the 24 unperturbed cells. On 
the other hand the power is underestimated if the standard point kinetics is used 
which represents the other extreme the smearing of the perturbation over all cells. A 
kind of iteration in the cutting of the regions leads to the ideal with the space time 
solution agreeing result if the perturbation is smeared over 8 cells and the remaining 
17 cells are unperturbed. The smearing over 5 cells leads to a slight overestimation 
and the smearing over 10 cells to an underestimation of the power. Fig. 4 shows the 
corresponding spatial solutions one second after inserting the perturbation for the 
approximations for different calculation regions compared to the space time solution 
calculated with PARCS [15]. These results show the real problem in the use of the 
multi point method – the quality of the results is very much dependent on the 
definition of the size of the calculation regions and the ideal size is very much 
dependent on the perturbation. Thus the multi point approximation method doesn’t 
give reliable results for kinetics calculations. This leads to the conclusion that the 
possible long time steps offered by the developed multi scale approximation 
functions are practically only usable if the problem of the time dependent spreading 
of neutrons during a perturbation can be simulated. This space time dependent 
spreading of neutrons during the perturbation calculated with PARCS is shown in Fig. 
5. This figure gives a feeling for the problems to be solved for an analytic 
approximation of the space time behavior of a multiplying system with delayed 
neutron production.  



Conclusion 
The method of multiple scale expansion offers a new way for the development of 
accurate and effective approximation functions for the point kinetics equations. The 
developed multi scale analytic approximation functions are powerful and effective 
tools for the analysis of the time behavior of multiplying systems with delayed neutron 
production. An extension up to 4 groups of delayed neutrons is possible.   
The results for the approximation of a space time dependent perturbation by using 
the multi point method are very much dependent on the size of the calculation 
regions. A reliable approximation is so far not achievable without caring for the 
spreading of the neutrons during the perturbation hence the multi point method can’t 
be recommended for neutron kinetics calculations. 
There are two ways for creating new efficient solutions for space time dependent 
problems with the help of the multi scale approximation functions imaginable either 
splitting the main matrix of a diffusion code by using the results of the multiple scale 
expansion solution or the approximation solution based on superposition of time 
dependent spatial functions. These functions have to be developed following the 
results shown in Fig. 5.  
The splitting of the main matrix of a diffusion code leads to a number of directly 
invertible single matrices for the different time scales of the multiple scale expansion. 
This leads to a more efficient way of solving the main matrix without the normally 
used iteration methods. The gain of this “exact” method is created by the more 
efficient numerically solution of the main matrix.  
The next logical step for the multiple scale expansion is the development of effective 
approximation solutions for approximations closer to the Boltzmann equation [16].  
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Fig. 1: Numerically calc. and approx. neutron 
population for a pos. reactivity insertion  
 

Fig. 2: Difference between the multi scale 
solution (2 del. gr.) and the numerical solution 

Fig. 4: Different spatial distributions at one 
second 

Fig. 3: Power for different multi point 
calculations 
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Fig. 5: Space time dependent spatial distribution during the transient 
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