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Introduction

The basis of all transient simulations for nuclear reactor cores is the reliable
calculation of the power production. The local power distribution is generally
calculated by solving the space, time, energy and angle dependent neutron flux
equation known as Boltzmann equation. The computation of exact solutions of the
Boltzmann equation is very time consuming. For practical numerical simulations
approximated solutions are usually unavoidable [1].

In fast reactor technology it is until today standard to solve the neutron kinetics
equations by separation of space and time either with the quasi-static method [2] or
the point kinetics method [3], [4]. The aim of this work is the development of solution
functions for approximations of the Boltzmann equation without space-time
separation and independent of the in fast reactors short neutron generation time.

The used mathematical method developed starting from the two variable expansion
[5] or method of extension [6] is the multiple scale expansion [7].

The time behavior of a nuclear system with delayed neutron production is mainly
influenced by the very different time scales of the prompt and delayed neutron
production which lead to the well known stiff time behavior of these systems. A
principle technique for deriving asymptotic solutions that remain valid in the far field
are multiple scale expansions [7], [5].

Expansion Solution for the Point Kinetics Equation

The demonstration of the principal usability of the method of multiple scale expansion
for the development of approximation functions for a multiplying system with delayed
neutron production is performed for the point kinetics equations. These equations
show the typical stiff time behavior which will be treated by using the multiple scale
expansion method.

The development of the multi scale approximation functions will be started from the
well-known point kinetics equations [8], [9] with 6 groups of delayed neutrons.
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n: neutron population
p: reactivity
N: mean neutron generation time
Bi: delayed neutron fraction of group i
Ai: precursor decay constant of group i

Ci: precursor concentration of group i



The developed multi scale approximation functions for the neutron population n and
the precursor concentrations ¢y, for a reduced system with two groups of delayed

neutrons are: [10], [11]
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Additionally definitions from the solution for one group of delayed neutrons are
needed:
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The constants Do, Kg1 and Kgz have to be determined with help of the starting
conditions or the previous time step.

Calculations for the Approximation of the Point Kinetics

Demonstration calculations for the developed multi scale approximation functions for
the point kinetics equations [10], [11] were performed to evaluate the quality of the
approximation. These calculations demonstrate the usability of the method of multiple
scale expansion for developing approximation functions for the typical stiff time
behavior of multiplying systems with delayed neutron production. Further on the
excellent quality of the developed approximation functions is demonstrated and the
possibility of approximating the point kinetics with 6 groups of delayed neutrons by
two effective groups for an acceptable time period is shown.

Finally the multi scale approximation functions are compared to the solution gained
by the Kaganove [12] algorithm which is the today’s standard for solving the point
kinetics equations in computer codes.



Fig. 1 shows the comparison of the Kaganove solution for 6 groups of delayed
neutrons with the results for the multi scale approximation functions for one and two
groups of delayed neutrons. All shown calculations are performed in a FORTRAN
code. The results agree very well, even for this very strong perturbation (p = 0.9
$).The detailed analysis of the difference is shown in Fig. 2. The agreement between
the results is very good. The difference for the relevant time period of 0.1 s up to 0.25
s is about 1.5 %0 up to 3.5 %0. The size of the relevant time step is predetermined by
the changes in the thermal hydraulics needed for feedback in transient calculations.
The major difference in the usage of these two diverse approximation methods is the
way to calculate the resulting neutron population at the desired time point. On the
one hand the desired time point can be inserted directly into the multi scale functions
on the other hand the calculation has to be carried out step by step until the desired
time point is reached. A detailed comparison of the possible time gain has been
performed [10], [11]. The time gained by using the multi scale functions instead of the
Kaganove algorithm is at least a factor of 3 for a calculation of a relevant time period.
The time gain is growing rapidly up to a factor of 350 and more depending on the
kind of perturbation and the convergence criterion for the Kaganove algorithm.

Limitations of the Multi Point Method

The idea of using point kinetics for the representation of spatial problems was
proposed by Avery [13] in the late 50ies. The approximation of spatial problems by
calculating individual point kinetics for different regions of the core of a reactor was
shortly reintroduced under the title multi point method [14]. Both methods are based
on the spatial arranging of a number of independent regions each calculated
independently by one extra set of point kinetic equations. The coupling between the
different regions is time independent and mostly calculated out of the static solution.
This method would give the ideal surrounding for using the very effective multi scale
approximation functions for the calculation of each node independently.

The results for calculations for one transient performed with differently sized regions
are shown for the power trace in Fig. 3 and for the spatial distribution one second
after the insertion of the perturbation in Fig. 4. The results for the relative power are
very much dependent on the cut of the calculation regions used for the multi point
method. On the one hand the power is drastically overestimated if the perturbed cell
is calculated by an own kinetics equation as well as all the 24 unperturbed cells. On
the other hand the power is underestimated if the standard point kinetics is used
which represents the other extreme the smearing of the perturbation over all cells. A
kind of iteration in the cutting of the regions leads to the ideal with the space time
solution agreeing result if the perturbation is smeared over 8 cells and the remaining
17 cells are unperturbed. The smearing over 5 cells leads to a slight overestimation
and the smearing over 10 cells to an underestimation of the power. Fig. 4 shows the
corresponding spatial solutions one second after inserting the perturbation for the
approximations for different calculation regions compared to the space time solution
calculated with PARCS [15]. These results show the real problem in the use of the
multi point method — the quality of the results is very much dependent on the
definition of the size of the calculation regions and the ideal size is very much
dependent on the perturbation. Thus the multi point approximation method doesn’t
give reliable results for kinetics calculations. This leads to the conclusion that the
possible long time steps offered by the developed multi scale approximation
functions are practically only usable if the problem of the time dependent spreading
of neutrons during a perturbation can be simulated. This space time dependent
spreading of neutrons during the perturbation calculated with PARCS is shown in Fig.
5. This figure gives a feeling for the problems to be solved for an analytic
approximation of the space time behavior of a multiplying system with delayed
neutron production.



Conclusion

The method of multiple scale expansion offers a new way for the development of
accurate and effective approximation functions for the point kinetics equations. The
developed multi scale analytic approximation functions are powerful and effective
tools for the analysis of the time behavior of multiplying systems with delayed neutron
production. An extension up to 4 groups of delayed neutrons is possible.

The results for the approximation of a space time dependent perturbation by using
the multi point method are very much dependent on the size of the calculation
regions. A reliable approximation is so far not achievable without caring for the
spreading of the neutrons during the perturbation hence the multi point method can’t
be recommended for neutron kinetics calculations.

There are two ways for creating new efficient solutions for space time dependent
problems with the help of the multi scale approximation functions imaginable either
splitting the main matrix of a diffusion code by using the results of the multiple scale
expansion solution or the approximation solution based on superposition of time
dependent spatial functions. These functions have to be developed following the
results shown in Fig. 5.

The splitting of the main matrix of a diffusion code leads to a number of directly
invertible single matrices for the different time scales of the multiple scale expansion.
This leads to a more efficient way of solving the main matrix without the normally
used iteration methods. The gain of this “exact” method is created by the more
efficient numerically solution of the main matrix.

The next logical step for the multiple scale expansion is the development of effective
approximation solutions for approximations closer to the Boltzmann equation [16].

References

[1] D. Smidt: ,Reaktortechnik”, Band 1 Grundlagen, G. Braun, Karlsruhe (1976)

[2] S. Kondo et al.: “SIMMER-1II: An Advanced Computer Program for LMFBR Severe Accident
Analysis”, ANP'92, Tokyo, Japan (1992)

[3] H. U. Wider et al.: “Comparative Analysis of a Hypothetical Loss-of-Flow Accident in an
Irradiated LMFBR Core Using Different Computer Models for a Common Benchmark Problem”, EUR
11925 EN (1989)

[4] “The SAS4A LMFBR Accident Analysis Code System*, ANL/RAS 83-38 revision 2 (1988)

[5] W. Lick: “Two Variable Expansions and Singular Perturbation Problems*, SIAM J. Appl. Math.
Vol. 17.4, 815 (1969)

[6] G. Sandri: “A New Method of Expansion in Mathematical Physics”, Il Nuovo Cimento, Vol. 36,
67-93 (1965)

[7] J. Kevorkian, J. D. Cole: “Multiple Scale and Singular Perturbation Methods”, Applied
Mathematical Science 114, Springer, New York (1996)

[8] K. O. Ott, R. J. Neuhold: "Introductory Nuclear Reactor Dynamics”, American Nuclear Society,
La Grange Park Il (1985)

[9] J. Duderstadt, L. Hamilton: “Nuclear Reactor Analysis®, John Wiley & Sons, Inc., New York
(1976)

[10] B. R. Merk: “Eine mehrskalige N&herungslosung fiur die zeitabhéngige Boltzmann-
Transportgleichung”, FZKA 6963, Karlsruhe (2003)

[11] B. R. Merk, D. G. Cacuci: “Multi Scale Approximation Solutions for the Time Dependent
Boltzmann Equation: Part | — The Point Kinetics Equations”, submitted to Nuc. Sc. and Eng.

[12] J. J. Kaganove: “Numerical Solution of the One-Group Space-Independent Reactor Kinetics
Equations for Neutron Density Given the Excess Reactivity”, Argonne National Lab. ANL-6132 (1960)
[13] R. Avery: “Theory of Coupled Reactors®, 2" International Conference on Peaceful Uses of
Atomic Energy, 12, 182-191 (1958)

[14] P. Bosio, P. Ravetto, M. M. Rostagno, A. Barzilov: “Multipoint Methods in Nuclear Reactor
Kinetics”, ANS International Meeting on Mathematical Methods for Nuclear Applications, Salt Lake
City (2001)

[15] H. G. Joo, D. A. Barber, G. Jiang, T. J. Downar: “PARCS Purdue Advanced Core Simulator”,
PU/NE-02-xx, Purdue University (2002)

[16] B. R. Merk, D. G. Cacuci: “Multi Scale Approximation Solutions for the Time Dependent
Boltzmann Equation: Part Il — The Pland P3 Equations”, submitted to Nuc. Sc. and Eng.



35}
30 f pd
c 25F o
2 I
g
2 20 o
o r
o B x>
S 15F 52
5 N
) N
c N
10 —
numeric (Kaganove)
«eo 1 eff. delayed gr.
5 = = = = 2 eff. delayed gr. —
X
3 I I
0 01 0.2
time [s]

Fig. 1: Numerically calc. and approx. neutron
population for a pos. reactivity insertion
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Fig. 3: Power for different multi point
calculations
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Fig. 2: Difference between the multi scale
solution (2 del. gr.) and the numerical solution
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Fig. 4: Different spatial distributions at one
second
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Fig. 5: Space time dependent spatial distribution during the transient



