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Abstract

The modified intranuclear cascade evaporation model combining the Monte Carlo method for the simulation of non-

equilibrium particle emission and deterministic algorithm for the description of equilibrium de-excitation is discussed.

The nuclear level density for equilibrium states is calculated using the generalized superfluid model taking into account

shell and collective effects. The inverse reaction cross-sections are calculated by the nuclear optical model. The model

was used for the analysis of radionuclide yields in proton-induced reactions at energies 0.8–2.6GeV. The results of

calculations show the advantage of the model proposed in accuracy of predictions compared with other popular

intranuclear cascade evaporation models.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During last decades intranuclear cascade eva-
poration model was successfully used for the
prediction of nuclear reactions characteristics:
energy and angular distributions of emitted
particles, excitation functions, yields of fission
fragments, residual recoil spectra and others.
e front matter r 2005 Elsevier B.V. All rights reserve
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The model consists of two parts, whose devel-
opment historically occurred independently of
each other: the intranuclear cascade model, which
describes non-equilibrium processes in the nucleus,
and statistical evaporation model. Progress in the
description of intranuclear interactions is con-
nected, mostly, to create the ‘‘time-dependent’’
models [1,2], the approaches modelling in detail
the density distribution of nucleons in the nucleus
[2,3], the combination of the intranuclear cascade
and precompound exciton models [4] and with the
development of the model considering the inter-
actions with ‘‘preformed’’ clusters [5].
d.
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Traditionally, a number of approximations was
used in the simulation of equilibrium process, whose
need was caused by limited power of computers.
The use of the simplest models for calculating the
nuclear level density [6,7], the ‘‘sharp-cut-off’’
approach to the inverse reaction cross-section
calculation [7–9], other simplifications, which make
it possible to obtain analytical expressions for
calculating particle emission widths [10,11], can be
attributed to these approximations. The simplified
models are used in all popular codes implementing
the intranuclear cascade evaporation model [11,12].
At the same time, modern computer technology
makes it possible to use more rigorous and
advanced models for the simulation of the equili-
brium particle emission using intranuclear cascade
evaporation model.
This paper describes the intranuclear cascade

evaporation model avoiding the lack of usual
simplifications [6–12] in the modelling of equili-
brium particle emission. The nuclear level density
is calculated using the generalized superfluid
model with parameters fitted to cumulative num-
ber of low-lying levels and observed neutron
resonance densities [13,14]. Inverse reaction
cross-sections are obtained by the optical model
without ‘‘sharp-cut-off’’ approximation. No sim-
plification is made to get particle emission widths
at low and high energy of excitation.
The proposed intranuclear cascade evaporation

model is used for the calculation of the radio-
nuclide yields in nuclear reactions induced by
protons with energy of 0.8–2.6GeV. The results
are compared with experimental data and calcula-
tions performed using different intranuclear cas-
cade evaporation models [12]: the Dresner [15] and
ABLA [16] evaporation models combined with the
Bertini [17], ISABEL [1,18] and INCL4 [3] intra-
nuclear cascade models, as with help of the
CEM2k [12,19] and CASCADE [2,20] models.
2. Model description

2.1. Equilibrium model

The modelling of equilibrium emission is per-
formed without the consideration of angular
momentum, which is the simple consequence of
the limited power of computers. The particle
emission rate is calculated as follows [21]:

W xð�xÞ ¼
ð2Sx þ 1Þmx�x

p2_3
sinvx ð�xÞ

rðZ0;A0;UÞ

rðZ;A;EÞ
(1)

where Sx, mx and �x are, respectively, spin, reduced
mass and energy of the emitted particle, sinvx the
inverse reaction cross-section, rðZ0;A0;UÞ the
nuclear level density for residual nucleus with the
excitation energy U, rðZ;A;EÞ the level density for
the nucleus emitting the x-particle, and E the
excitation energy.
The nuclear level density is calculated according

to the generalized superfluid model [13]

rðUÞ ¼ rqpðU
0ÞKvibðU

0ÞK rotðU
0Þ (2)

where rqpðU
0Þ is the density of quasi-particle

nuclear excitation [13], and KvibðU
0Þ and KrotðU

0Þ

are the vibrational and rotational enhancement
factors at the effective energy of excitation U 0

calculated, respectively, according to Refs. [14,22].
The nuclear level density parameters are calcu-

lated according to the following expression [13]:

aðUÞ

¼
~að1þ dW jðU 0 � EcondÞ=ðU

0 � EcondÞ; U 04U cr

aðU crÞ; U 0pU cr

�
ð3Þ

where dW is the shell correction to the mass
formula equal to the difference between experi-
mental mass defect and one calculated from the
liquid drop model [23], jðUÞ ¼ 1� expð�gUÞ,
g ¼ 0:4=A1=3 MeV�1. The asymptotic value of
nuclear level parameter is given as

~a ¼ Að0:073þ 0:115A�1=3Þ. (4)

The effective energy of excitation U 0, the critical
energy of the phase transition U cr and the
condensation energy Econd are calculated as
follows:

U 0 ¼ U � nD0 (5)

Ucr ¼ 0:472 aðU crÞD20 � nD0 (6)

Econd ¼ 0:152 aðU crÞD20 � nD0. (7)
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The correlation function D0 is equal to

D0 ¼ 12A�1=2 (8)

where n ¼ 0 for even–even nuclei, n ¼ 1 for nuclei
with odd A value, n ¼ 2 for odd–odd nuclei.
The inverse reaction cross-section sinvx is calcu-

lated by the optical model. The parameters of the
optical potentials for nucleons and light charged
fragments are discussed in Refs. [24,25]. The
calculated sinvx cross-section values are used in
the integration of particle emission rates, Eq. (1).
The probability of the photon emission is

calculated according to Weisskopf–Ewing model
[21] with the photon absorption cross-section
parameterized in Ref. [26]. The fission probability
is calculated using the Bohr–Wheeler approach
[27]. The distribution of fission fragments is
calculated according to Ref. [28].
The discussed model is implemented in the

computer code following Refs. [29,30]. The non-
equilibrium particle emission is modelled by the
Monte Carlo method using the intranuclear cascade
model. The emission of fast particles for each Monte
Carlo history results in the creation of residual
nucleus with a certain atomic and mass numbers Z,
A, with the excitation energy U. For the residual
nucleus (Z;A;U) the calculation of reaction products
is performed using the ‘‘deterministic’’ algorithm by
the common integration of particle emission rates,
without resorting to Monte Carlo. This method is
more time consuming than usual intranuclear cascade
evaporation algorithm, but that less consuming than
the deterministic integration of all non-equilibrium
and equilibrium particle emission rates. The advan-
tage of the method is its relative simplicity and fast
implementation in the computer code, since the
routines describing the equilibrium emission in the
widely used and verified computer codes, as STAPRE
[31], GNASH [32], ALICE [33], etc. can be used for
this purpose.
In the present work the calculations are

performed using the equilibrium algorithm from
the modified ALICE code [33].

2.2. Non-equilibrium model

The non-equilibrium particle emission is de-
scribed using the intranuclear cascade model
implemented in the CASCADE (Dubna) code
[20]. Below, this model combined with the
equilibrium model described in Section 2.1 is
denoted by CASCADE/ASF.
3. Comparison of calculations with experimental

data

The detail and adequate information, which can
be used for the demonstration of predictive power
of the equilibrium model combined with intra-
nuclear cascade model, are the measured yields of
radionuclides. By the principle of ‘‘random selec-
tion’’ we take the results of recent measurements
of the radionuclide yield in the irradiation of 59Co
and 184W by protons with the energy from 0.8 to
2.6GeV [34].
The calculations were performed using the model

discussed in Section 2 and by various intranuclear
cascade evaporation models: the CASCADE [2,20]
and CEM2k [12,19] models, the Bertini [17],
ISABEL [18] and INCL4 [3] models combined with
the Dresner [15] and ABLA [16] evaporation
models. All four evaporation models considered
(Dresner, ABLA, CASCADE and CEM2k) use
certain approximations in the modelling of equili-
brium particle emission: the Fermi gas model for the
level density calculation [6,7,10,12], the ‘‘sharp-cut-
off’’ formulas for inverse cross-sections [8], and
other simplifications justified only at high-excitation
energies [10].
The calculated radionuclide yields were normal-

ized on the values of the non-elastic cross-sections
for proton interactions with nuclei, calculated by
MCNPX [12] (Tables 1 and 2). An equal number
of Monte Carlo histories was used in the simula-
tions by different models. The cumulative cross-
sections were obtained using the decay data from
FENDL/D-2. The unknown isomeric cross-section
ratios were taken to be 0.5.
The quantification of the agreement between

calculations and measured data has been done
using the F-deviation factor [6,34,36]

F ¼ 10

1
N

PN
i¼1

½logðsexp
i

Þ�logðscalc
i

Þ�2

� �1=2

. (9)
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Table 1

Results of the comparison of experimental data [34] with calculations for 59Co irradiated with 1.2–2.6GeV protons

Factor Bertini/

Dresner

Bertini/

ABLA

ISABEL/

Dresner

ISABEL/

ABLA

INCL4/

Dresner

INCL4/

ABLA

CEM2k CASCADE

(original)

CASCADE/

ASF (this work)

Proton energy 1.2GeV, number of points 20, snon ¼ 772mb

H 4.87 15.85 4.58 21.17 4.16 20.35 6.52 12.79 6.02

D 0.32 0.81 0.28 1.10 0.25 1.02 0.41 0.60 0.36

R 0.70 1.50 0.89 1.83 0.91 1.78 0.93 1.12 1.10

F 1.74 2.07 1.58 2.31 1.56 2.21 1.78 2.52 1.50

Proton energy 1.6GeV, number of points 20, snon ¼ 773mb

H 4.51 13.79 5.66 23.16 4.30 20.05 5.82 11.80 5.51

D 0.33 0.81 0.33 1.27 0.25 1.13 0.37 0.59 0.37

R 0.71 1.43 1.01 2.04 0.95 1.87 0.84 1.11 1.09

F 1.96 2.11 1.65 2.45 1.51 2.30 1.78 2.38 1.48

Proton energy 2.6GeV, number of points 20, snon ¼ 770mb

H 4.29 13.71 5.78 28.15 4.42 26.00 5.23 10.26 5.51

D 0.32 0.80 0.34 1.63 0.27 1.45 0.36 0.58 0.37

R 0.71 1.42 1.15 2.38 1.03 2.23 0.80 1.08 1.08

F 1.76 2.11 1.55 2.75 1.47 2.55 1.86 2.31 1.49

All energies, number of points 60

H 4.56 14.48 5.37 24.34 4.29 22.30 5.88 11.66 5.69

D 0.32 0.81 0.32 1.33 0.26 1.20 0.38 0.59 0.37

R 0.71 1.45 1.02 2.08 0.96 1.96 0.86 1.10 1.09

F 1.82 2.10 1.59 2.50 1.51 2.35 1.81 2.40 1.49

The cross-section of non-elastic proton interaction snon is shown. The best results are in italics.

Table 2

Results of the comparison of experimental data [34] with calculations for 184W irradiated with 0.8 and 1.6GeV protons

Factor Bertini/

Dresner

Bertini/

ABLA

ISABEL/

Dresner

ISABEL/

ABLA

INCL4/

Dresner

INCL4/

ABLA

CEM2k CASCADE

(original)

CASCADE/

ASF (this work)

Proton energy 0.8GeV, number of points 67, snon ¼ 1636mb

H 5.08 5.04 5.05 5.35 5.56 6.18 4.85 4.72 4.34

D 0.38 0.39 0.37 0.38 0.41 0.43 0.38 0.39 0.33

R 0.83 0.83 0.78 0.78 0.75 0.75 0.80 0.78 0.86

F 1.76 2.28 2.13 2.24 2.20 2.54 2.89 1.65a 1.57

Proton energy 1.6GeV, number of points 91, snon ¼ 1687mb

H 6.89 5.67 5.45 5.91 5.25 6.08 5.88 4.90 4.51

D 0.48 0.44 0.44 0.44 0.38 0.40 0.45 0.35 0.33

R 0.87 0.89 0.80 0.83 0.79 0.85 0.89 0.83 0.87

F 1.87 2.63 2.60 2.83 2.73 2.57 3.60 2.85b 1.69

All energies, number of points 158

H 6.19 5.41 5.28 5.68 5.38 6.12 5.47 4.82 4.44

D 0.44 0.42 0.41 0.41 0.39 0.41 0.42 0.37 0.33

R 0.85 0.86 0.79 0.81 0.77 0.81 0.85 0.81 0.87

F 1.82 2.48 2.40 2.58 2.51 2.56 3.30 2.39c 1.64

The cross-section of non-elastic proton interaction snon is shown. The best results are in italics.
aNumber of points (N) is equal to 58.
bN is equal to 86.
cN is equal to 144.
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For illustration purposes one can use also other
deviation factors [35]

H ¼
1

N

XN

i¼1

sexpi � scalci

Dsexpi

� �2 !1=2

(10)

D ¼
1

N

XN

i¼1

sexpi � scalci

sexpi

����
���� (11)

R ¼
1

N

XN

i¼1

scalci

sexpi

(12)

where sexpi and Dsexpi are, respectively, the mea-
sured cross-section and its uncertainty, scalci the
calculated cross-section, and N the number of the
experimental points.
The F-criterion [6,34,36], Eq. (9) is the most

adequate for the comparative analyses of different
calculations, taking into account that the mea-
sured yields are known only for the limited
number of residual nuclei. In this case, the F-
factor reproduces the systematic underestimation
as the overestimation of the results of calculations
compared with experimental data. In other criter-
ia, Eqs. (10)–(12) the underestimation of the scalci

values has an ‘‘advantage’’ compared with over-
estimation of the results. For this reason, in spite
of the clarity of Eq. (10)–(12), these criteria are of
secondary importance and used in the present
paper for an illustrative purpose only.
Tables 1 and 2 show the values of different

deviation factors obtained from the comparison of
calculations with the experimental data [34].
Taking into account, that the use of the systema-
tics Eq. (4) is justified for medium and heavy
nuclei, the consideration is limited by the yields of
residual nuclei with Z420. For an illustration,
Fig. 1 shows the absolute values of radionuclide
yields calculated by the proposed CASCADE/
ASF model and the Bertini/Dresner model and
measured in Ref. [34] for 184W irradiated with
1.6GeV protons.
The comparison shows that the substitution of

the original evaporation algorithm in the CAS-
CADE code [2,20] by the model described in
Section 2 results in a noticeable gain in accuracy of
predictions. In most cases the model discussed is
also the best compared with other models (Tables
1 and 2, Fig. 1).
4. Conclusion

The modified intranuclear cascade evaporation
model combining the Monte Carlo method for the
simulation of non-equilibrium particle emission
and deterministic algorithm for the description of
equilibrium de-excitation was discussed. The
nuclear level density for equilibrium states was
calculated using the generalized superfluid model
taking into account collective enhancement of the
nuclear level density in addition to shell and
superfluid effects [13,14]. The inverse reaction
cross-sections were calculated by the nuclear
optical model. Calculations were performed with-
out additional simplifications [10,11], usually
applied in the simulation of evaporation particle
cascade at high energies.
The proposed model has been used for the

analysis of radionuclide yields in the proton-
induced reaction at energies 0.8–2.6GeV. The
results of calculations show the definite advantage
of the model in accuracy of predictions in
comparison with other intranuclear cascade eva-
poration models [12,20].
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